## Full Environmental Assessment Form <br> Part 1 - Project and Setting

## Instructions for Completing Part 1

Part 1 is to be completed by the applicant or project sponsor. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification.

Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information; indicate whether missing information does not exist, or is not reasonably available to the sponsor; and, when possible, generally describe work or studies which would be necessary to update or fully develop that information.

Applicants/sponsors must complete all items in Sections A \& B. In Sections C, D \& E, most items contain an initial question that must be answered either "Yes" or "No". If the answer to the initial question is "Yes", complete the sub-questions that follow. If the answer to the initial question is "No", proceed to the next question. Section F allows the project sponsor to identify and attach any additional information. Section $G$ requires the name and signature of the applicant or project sponsor to verify that the information contained in Part 1is accurate and complete.

## A. Project and Applicant/Sponsor Information.

Name of Action or Project:
Dutchess Shepherd LLC
Project Location (describe, and attach a general location map):
6 Mulberry Street, Rhinebeck, NY 12572
Brief Description of Proposed Action (include purpose or need):
The applicant proposes to redevelop an existing 1.43 acre lot containing a $15,554 \mathrm{sq}$. ft. historic structure into four single family homes and a 9 -unit multi-family dwelling. 18 off-street parking spaces are proposed to serve the multi-family dwelling. A 4,278.3 sq. ft. portion of the existing structure would be demolished and the remainder of the existing structure would be rehabilitated.

The project requires a zoning amendment to create a new overlay district for adaptive reuse, site plan approval, demolition permit approval and subdivision approval.

| Name of Applicant/Sponsor: <br> Dutchess Shepherd LLC | Telephone: (212) 365-1052 |  |
| :---: | :---: | :---: |
|  | E-Mail: david@nava.nyc |  |
| Address: PO Box 214 |  |  |
| City/PO: ${ }_{\text {Rhinebeck }}$ | State: ${ }_{\text {NY }}$ | Zip Code: ${ }_{12572}$ |
| Project Contact (if not same as sponsor; give name and title/role): Victoria L. Polidoro, Esq. | Telephone: (845) 516-4323 |  |
|  | E-Mail: ${ }^{\text {vpolidoro@rodenhausenchale.com }}$ |  |
| Address: <br> 55 Chestnut Street |  |  |
| City/PO: <br> Rhinebeck | State: NY | $\begin{aligned} & \text { Zip Code: } \\ & 12572 \end{aligned}$ |
| Property Owner (if not same as sponsor): | Telephone: |  |
|  | E-Mail: |  |
| Address: |  |  |
| City/PO: | State: | Zip Code: |

B. Government Approvals
B. Government Approvals, Funding, or Sponsorship. ("Funding" includes grants, loans, tax relief, and any other forms of financial assistance.)

| Government Entity | If Yes: Identify Agency and Approval(s) Required | Application Date (Actual or projected) |
| :---: | :---: | :---: |
| a. City Counsel, Town Board, $\quad \square \mathrm{Yes} \square$ No or Village Board of Trustees | Village Board - Adoption of Overlay District (Local Law) |  |
| b. City, Town or Village $\begin{aligned} & \text { VYes } \square \text { No } \\ & \text { Planning Board or Commission }\end{aligned}$ | Planning Board - Site Plan and demolition permit |  |
| c. City, Town or $\quad \square \mathrm{Yes} \square \mathrm{No}$ Village Zoning Board of Appeals | Zoning Board of Appeals - TBD |  |
| d. Other local agencies $\square \mathrm{Yes} \square \mathrm{No}$ |  |  |
| e. County agencies $\square \mathrm{Yes} \square \mathrm{No}$ | Department of Behavioral and Community Health |  |
| f. Regional agencies $\square \mathrm{Yes} \square \mathrm{No}$ |  |  |
| g. State agencies $\quad \square \mathrm{Yes} \square \mathrm{No}$ | Department of Transportation |  |
| h. Federal agencies $\quad \square \mathrm{Yes} \square$ No |  |  |
| i. Coastal Resources. <br> i. Is the project site within a Coastal Area, or the waterfront area of a Designated Inland Waterway? <br> ii. Is the project site located in a community with an approved Local Waterfront Revitalization Program? <br> iii. Is the project site within a Coastal Erosion Hazard Area? |  | Yes $\square$ No Yes ${ }^{\square}$ No Yes $\square$ No |

## C. Planning and Zoning

## C.1. Planning and zoning actions.

Will administrative or legislative adoption, or amendment of a plan, local law, ordinance, rule or regulation be the $\square$ Yes $\square$ No only approval(s) which must be granted to enable the proposed action to proceed?

- If Yes, complete sections C, F and G.
- If No, proceed to question C. 2 and complete all remaining sections and questions in Part 1


## C.2. Adopted land use plans.

a. Do any municipally- adopted (city, town, village or county) comprehensive land use plan(s) include the site where the proposed action would be located?
If Yes, does the comprehensive plan include specific recommendations for the site where the proposed action $\square \mathrm{Yes} \square$ No would be located?
b. Is the site of the proposed action within any local or regional special planning district (for example: Greenway; $\square$ Yes $\square$ No Brownfield Opportunity Area (BOA); designated State or Federal heritage area; watershed management plan; or other?)
If Yes, identify the plan(s):
c. Is the proposed action located wholly or partially within an area listed in an adopted municipal open space plan, $\square$ Yes $\square$ No or an adopted municipal farmland protection plan?
If Yes, identify the plan(s):

| C.3. Zoning |  |
| :---: | :---: |
| a. Is the site of the proposed action located in a municipality with an adopted zoning law or ordinance. If Yes, what is the zoning classification(s) including any applicable overlay district? <br> R-Residential district | $\square \mathrm{Yes} \square \mathrm{No}$ |
| b. Is the use permitted or allowed by a special or conditional use permit? | $\square \mathrm{Yes} \square \mathrm{JNo}$ |
| c. Is a zoning change requested as part of the proposed action? <br> If Yes, <br> i. What is the proposed new zoning for the site? Bulkeley Schoolhouse Overlay District | $\square \mathrm{Yes} \square$ No |
| C.4. Existing community services. |  |
| a. In what school district is the project site located? Rhinebeck Central School DIstrict |  |
| b. What police or other public protection forces serve the project site? Village of Rhinebeck, Dutchess County Sherriff and State Troopers |  |
| c. Which fire protection and emergency medical services serve the project site? Rhinebeck |  |
| d. What parks serve the project site? <br> Lions Club Mini Park, Thompson Mazzarella Park, American Legion Park |  |

## D. Project Details

## D.1. Proposed and Potential Development

a. What is the general nature of the proposed action (e.g., residential, industrial, commercial, recreational; if mixed, include all components)? residential
b. a. Total acreage of the site of the proposed action?

| 1.43 | acres |
| ---: | :--- |
| 1.4 |  |
|  |  |
|  |  |
| 1.43 acres |  |

c. Total acreage (project site and any contiguous properties) owned or controlled by the applicant or project sponsor?
1.43 acres
c. Is the proposed action an expansion of an existing project or use?
$\square$ Yes $\square$ No
i. If Yes, what is the approximate percentage of the proposed expansion and identify the units (e.g., acres, miles, housing units, square feet)? \% Units: $\qquad$
d. Is the proposed action a subdivision, or does it include a subdivision? $\quad$ VYes $\square$ No

If Yes,
i. Purpose or type of subdivision? (e.g., residential, industrial, commercial; if mixed, specify types) residential
ii. Is a cluster/conservation layout proposed? $\square$ Yes $\square$ No
iii. Number of lots proposed? $\qquad$
iv. Minimum and maximum proposed lot sizes? Minimum $\quad 8,115$ sq. ft. Maximum 29,512 sq. ft
e. Will the proposed action be constructed in multiple phases?

|  | months |  |
| :---: | :---: | :---: |
| 3 |  |  |
| May | month | 2024 year |
| Oct | month | 2027 year |

i. If No, anticipated period of construction:
ii. If Yes:

- Total number of phases anticipated
- Anticipated commencement date of phase 1 (including demolition)
- Anticipated completion date of final phase

Oct month 2027 year

- Generally describe connections or relationships among phases, including any contingencies where progress of one phase may determine timing or duration of future phases:
Adaptive reuse of the former schoolhouse will occur first (18 months). Two additional phases of 2 houses each ( 12 months each)

| f. Does the project include new residential uses? If Yes, show numbers of units proposed. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | One Family | Two Family | Three Family | Multiple Family (four or more) |
| Initial Phase |  |  |  | 1 (9 units) |
| At completion of all phases | 4 |  |  | 1 (9 units) |

g. Does the proposed action include new non-residential construction (including expansions)?

If Yes,
i. Total number of structures $\qquad$
ii. Dimensions (in feet) of largest proposed structure: $\qquad$
$\qquad$ width; and $\qquad$ length
iii. Approximate extent of building space to be heated or cooled: $\qquad$ square feet
h. Does the proposed action include construction or other activities that will result in the impoundment of any $\square$ Yes $\square$ No liquids, such as creation of a water supply, reservoir, pond, lake, waste lagoon or other storage?
If Yes,
i. Purpose of the impoundment:
ii. If a water impoundment, the principal source of the water: $\quad \square$ Ground water $\square$ Surface water streams $\square$ Other specify:
iii. If other than water, identify the type of impounded/contained liquids and their source.
iv. Approximate size of the proposed impoundment. Volume: $\qquad$ million gallons; surface area: $\qquad$ acres
$v$. Dimensions of the proposed dam or impounding structure: height; length
vi. Construction method/materials for the proposed dam or impounding structure (e.g., earth fill, rock, wood, concrete):

## D.2. Project Operations

a. Does the proposed action include any excavation, mining, or dredging, during construction, operations, or both? $\square$ Yes $\square$ No (Not including general site preparation, grading or installation of utilities or foundations where all excavated materials will remain onsite)
If Yes:
$i$.What is the purpose of the excavation or dredging?
ii. How much material (including rock, earth, sediments, etc.) is proposed to be removed from the site?

- Volume (specify tons or cubic yards):
- Over what duration of time?
iii. Describe nature and characteristics of materials to be excavated or dredged, and plans to use, manage or dispose of them.
iv. Will there be onsite dewatering or processing of excavated materials?
$\square$ Yes $\square$ No If yes, describe.
$v$. What is the total area to be dredged or excavated? $\qquad$ acres
vi. What is the maximum area to be worked at any one time? acres
vii. What would be the maximum depth of excavation or dredging? feet
viii. Will the excavation require blasting?
$\square \mathrm{Ye} \square$ №
ix. Summarize site reclamation goals and plan: $\qquad$
b. Would the proposed action cause or result in alteration of, increase or decrease in size of, or encroachment $\quad \square$ Yes $\square$ No into any existing wetland, waterbody, shoreline, beach or adjacent area?
If Yes:
i. Identify the wetland or waterbody which would be affected (by name, water index number, wetland map number or geographic description):
ii. Describe how the proposed action would affect that waterbody or wetland, e.g. excavation, fill, placement of structures, or alteration of channels, banks and shorelines. Indicate extent of activities, alterations and additions in square feet or acres:
iii. Will the proposed action cause or result in disturbance to bottom sediments?
$\square$ Yes $\square$ No If Yes, describe:
$i v$. Will the proposed action cause or result in the destruction or removal of aquatic vegetation? $\square$ Yes $\square$ No If Yes:
- acres of aquatic vegetation proposed to be removed:
- expected acreage of aquatic vegetation remaining after project completion:
- purpose of proposed removal (e.g. beach clearing, invasive species control, boat access):
- proposed method of plant removal:
- if chemical/herbicide treatment will be used, specify product(s):
$v$. Describe any proposed reclamation/mitigation following disturbance:
c. Will the proposed action use, or create a new demand for water?

If Yes:
i. Total anticipated water usage/demand per day:

3190 gallons/day
ii. Will the proposed action obtain water from an existing public water supply?

If Yes:

- Name of district or service area: Village of Rhinebeck
- Does the existing public water supply have capacity to serve the proposal?
$\square \mathrm{Yes} \square \mathrm{No}$
- Is the project site in the existing district?
- Is expansion of the district needed?
- Do existing lines serve the project site?
iii. Will line extension within an existing district be necessary to supply the project?

Yes:

- Describe extensions or capacity expansions proposed to serve this project:

N/A

- Source(s) of supply for the district: Hudson River
iv. Is a new water supply district or service area proposed to be formed to serve the project site? $\square$ Yes $\square$ No

If, Yes:

- Applicant/sponsor for new district:
- Date application submitted or anticipated:
- Proposed source(s) of supply for new district:
$v$. If a public water supply will not be used, describe plans to provide water supply for the project:
vi. If water supply will be from wells (public or private), what is the maximum pumping capacity: $\qquad$ gallons/minute.
d. Will the proposed action generate liquid wastes?

If Yes:
i. Total anticipated liquid waste generation per day: $\qquad$
ii. Nature of liquid wastes to be generated (e.g., sanitary wastewater, industrial; if combination, describe all components and approximate volumes or proportions of each):

> sanitary wastewater
iii. Will the proposed action use any existing public wastewater treatment facilities? If Yes:

- Name of wastewater treatment plant to be used:
- Name of district:
- Does the existing wastewater treatment plant have capacity to serve the project?
- Is the project site in the existing district?
- Is expansion of the district needed?
- Do existing sewer lines serve the project site?
- Will a line extension within an existing district be necessary to serve the project? If Yes:
- Describe extensions or capacity expansions proposed to serve this project: $\qquad$
$i v$. Will a new wastewater (sewage) treatment district be formed to serve the project site?
If Yes:
- Applicant/sponsor for new district:
- Date application submitted or anticipated:
- What is the receiving water for the wastewater discharge?
$v$. If public facilities will not be used, describe plans to provide wastewater treatment for the project, including specifying proposed receiving water (name and classification if surface discharge or describe subsurface disposal plans):
On site septic systems
vi. Describe any plans or designs to capture, recycle or reuse liquid waste:
e. Will the proposed action disturb more than one acre and create stormwater runoff, either from new point sources (i.e. ditches, pipes, swales, curbs, gutters or other concentrated flows of stormwater) or non-point source (i.e. sheet flow) during construction or post construction?
If Yes:
i. How much impervious surface will the project create in relation to total size of project parcel?

26,197.42 Square feet or . 6014 acres (impervious surface)
Square feet or 1.43 acres (parcel size)
ii. Describe types of new point sources.
iii. Where will the stormwater runoff be directed (i.e. on-site stormwater management facility/structures, adjacent properties, groundwater, on-site surface water or off-site surface waters)?

- If to surface waters, identify receiving water bodies or wetlands:
- Will stormwater runoff flow to adjacent properties?

$i v$. Does the proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater?
f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel combustion, waste incineration, or other processes or operations?
If Yes, identify:
i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles)
ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers)
iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation)
g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit, $\square$ Yes $\square$ No or Federal Clean Air Act Title IV or Title V Permit?
If Yes:
i. Is the project site located in an Air quality non-attainment area? (Area routinely or periodically fails to meet $\quad \square \mathrm{Yes} \square$ No ambient air quality standards for all or some parts of the year)
ii. In addition to emissions as calculated in the application, the project will generate:
- Tons/year (short tons) of Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$
- Tons/year (short tons) of Nitrous Oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$
- Tons/year (short tons) of Perfluorocarbons (PFCs)
- Tons/year (short tons) of Sulfur Hexafluoride $\left(\mathrm{SF}_{6}\right)$
- Tons/year (short tons) of Carbon Dioxide equivalent of Hydroflourocarbons (HFCs)
- __Tons/year (short tons) of Hazardous Air Pollutants (HAPs)
h. Will the proposed action generate or emit methane (including, but not limited to, sewage treatment plants, landfills, composting facilities)?
If Yes:
i. Estimate methane generation in tons/year (metric):
ii. Describe any methane capture, control or elimination measures included in project design (e.g., combustion to generate heat or electricity, flaring):
i. Will the proposed action result in the release of air pollutants from open-air operations or processes, such as quarry or landfill operations?
If Yes: Describe operations and nature of emissions (e.g., diesel exhaust, rock particulates/dust):
j. Will the proposed action result in a substantial increase in traffic above present levels or generate substantial new demand for transportation facilities or services? *See Traffic Impact Study as attached Exhibit B
If Yes:
i. When is the peak traffic expected (Check all that apply): $\boldsymbol{\nabla}$ Morning $\quad \square$ Evening $\nabla$ Weekend $\square$ Randomly between hours of $\qquad$ to $\qquad$ .
ii. For commercial activities only, projected number of truck trips/day and type (e.g., semi trailers and dump trucks):
iii. Parking spaces: Existing $\quad 20 \quad$ Proposed $\quad 27 \quad$ Net increase/decrease $\quad 7 \quad \square$
$i v$. Does the proposed action include any shared use parking?
$v$. If the proposed action includes any modification of existing roads, creation of new roads or change in existing access, describe:
vi. Are public/private transportation service(s) or facilities available within $1 / 2$ mile of the proposed site? $7 \mathrm{Yes} \square \mathrm{No}$
vii Will the proposed action include access to public transportation or accommodations for use of hybrid, electric or other alternative fueled vehicles?
viii. Will the proposed action include plans for pedestrian or bicycle accommodations for connections to existing $\square \mathrm{Yes} \square$ No pedestrian or bicycle routes?
k. Will the proposed action (for commercial or industrial projects only) generate new or additional demand for energy?
If Yes:
i. Estimate annual electricity demand during operation of the proposed action:
ii. Anticipated sources/suppliers of electricity for the project (e.g., on-site combustion, on-site renewable, via grid/local utility, or other):
iii. Will the proposed action require a new, or an upgrade, to an existing substation?

1. Hours of operation. Answer all items which apply.
i. During Construction:

- Monday - Friday: see Attached Narrative re Noise
- Saturday: as Exhibit C
- Sunday:
- Holidays:


## ii. During Operations:

- Monday - Friday: NA
- Saturday:
- Sunday:
- Holidays:
m . Will the proposed action produce noise that will exceed existing ambient noise levels during construction, operation, or both?


## If yes:

i. Provide details including sources, time of day and duration:

Temporary construction noise, See attached Exhibit C
ii. Will the proposed action remove existing natural barriers that could act as a noise barrier or screen? Describe:
n . Will the proposed action have outdoor lighting?
If yes:
i. Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures:

Outdoor light fixtures will be dark-sky compliant, see attached lighting plan as Exhibit D
ii. Will proposed action remove existing natural barriers that could act as a light barrier or screen?

Describe: Additional vegetative screening is proposed
o. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures:
p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons)

Yes $\square \mathrm{No}$ or chemical products 185 gallons in above ground storage or any amount in underground storage?
If Yes:
i. Product(s) to be stored
ii. Volume(s) per unit time___ (e.g., month, year)
iii. Generally, describe the proposed storage facilities: $\qquad$
q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, $\square$ Yes $\square$ No insecticides) during construction or operation?
If Yes:
i. Describe proposed treatment(s):
$\qquad$
$\qquad$
ii. Will the proposed action use Integrated Pest Management Practices?
r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal $\quad \square$ Yes $\square$ No of solid waste (excluding hazardous materials)?
If Yes:
i. Describe any solid waste(s) to be generated during construction or operation of the facility:

- Construction: $\qquad$ tons per $\qquad$ (unit of time)
- Operation : tons per (unit of time)
ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste:
- Construction:
- Operation: $\qquad$
iii. Proposed disposal methods/facilities for solid waste generated on-site:
- Construction: $\qquad$
- Operation:
s. Does the proposed action include construction or modification of a solid waste management facility?

If Yes:
i. Type of management or handling of waste proposed for the site (e.g., recycling or transfer station, composting, landfill, or other disposal activities):
ii. Anticipated rate of disposal/processing:

- Tons/month, if transfer or other non-combustion/thermal treatment, or
- Tons/hour, if combustion or thermal treatment
iii. If landfill, anticipated site life:
years
t . Will the proposed action at the site involve the commercial generation, treatment, storage, or disposal of hazardous $\square$ Yes $\square$ No waste?
If Yes:
i. Name(s) of all hazardous wastes or constituents to be generated, handled or managed at facility: $\qquad$
ii. Generally describe processes or activities involving hazardous wastes or constituents:
iii. Specify amount to be handled or generated $\qquad$ tons/month
iv. Describe any proposals for on-site minimization, recycling or reuse of hazardous constituents: $\qquad$
$v$. Will any hazardous wastes be disposed at an existing offsite hazardous waste facility?
If Yes: provide name and location of facility:
If No: describe proposed management of any hazardous wastes which will not be sent to a hazardous waste facility:


## E. Site and Setting of Proposed Action

## E.1. Land uses on and surrounding the project site

a. Existing land uses.
i. Check all uses that occur on, adjoining and near the project site.
$\begin{array}{ll}\square \text { Urban } & \square \text { Industrial } \square \text { Commercial } \\ \square \text { Forest } & \square \text { Agriculture } \square \text { Aquatic }\end{array}$
$\square$ Residential (suburban) $\square$ Rural (non-farm)
$\qquad$ Z Other (specify): religious
ii. If mix of uses, generally describe:
b. Land uses and covertypes on the project site.

| Land use or Covertype | Current <br> Acreage | Acreage After Project Completion | Change <br> (Acres +/-) |
| :---: | :---: | :---: | :---: |
| - Roads, buildings, and other paved or impervious surfaces | . 4973 ac | . 6014 ac | +0.1041 |
| - Forested | 0 | 0 | 0 |
| - Meadows, grasslands or brushlands (nonagricultural, including abandoned agricultural) |  |  |  |
| - Agricultural <br> (includes active orchards, field, greenhouse etc.) | 0 | 0 | 0 |
| - Surface water features <br> (lakes, ponds, streams, rivers, etc.) | 0 | 0 | 0 |
| - Wetlands (freshwater or tidal) | 0 | 0 | 0 |
| - Non-vegetated (bare rock, earth or fill) | 0 | 0 | 0 |
| - Other <br> Describe: |  |  |  |

c. Is the project site presently used by members of the community for public recreation?
d. Are there any facilities serving children, the elderly, people with disabilities (e.g., schools, hospitals, licensed day care centers, or group homes) within 1500 feet of the project site?
If Yes,
i. Identify Facilities:
e. Does the project site contain an existing dam?

If Yes:
i. Dimensions of the dam and impoundment:

- Dam height: $\qquad$ feet
- Dam length: $\qquad$ feet
- Surface area:
- Volume impounded: $\qquad$ gallons OR acre-feet
ii. Dam's existing hazard classification:
iii. Provide date and summarize results of last inspection:
f. Has the project site ever been used as a municipal, commercial or industrial solid waste management facility, $\quad \square$ Yes $\square$ No or does the project site adjoin property which is now, or was at one time, used as a solid waste management facility?
If Yes:
i. Has the facility been formally closed?
$\square \mathrm{Yes} \square$ No
- If yes, cite sources/documentation:
ii. Describe the location of the project site relative to the boundaries of the solid waste management facility:
iii. Describe any development constraints due to the prior solid waste activities: $\qquad$
g. Have hazardous wastes been generated, treated and/or disposed of at the site, or does the project site adjoin $\square$ Yes $\square$ No property which is now or was at one time used to commercially treat, store and/or dispose of hazardous waste?
If Yes:
i. Describe waste(s) handled and waste management activities, including approximate time when activities occurred:
h. Potential contamination history. Has there been a reported spill at the proposed project site, or have any remedial actions been conducted at or adjacent to the proposed site?
If Yes:
$i$. Is any portion of the site listed on the NYSDEC Spills Incidents database or Environmental Site Remediation database? Check all that apply:

| $\square$ Yes - Spills Incidents database | Provide DEC ID number(s): |
| :--- | :--- |
| $\square$ Yes - Environmental Site Remediation database | Provide DEC ID number(s): |
| $\square$ Neither database |  |

ii. If site has been subject of RCRA corrective activities, describe control measures:
$\qquad$
iii. Is the project within 2000 feet of any site in the NYSDEC Environmental Site Remediation database?

If yes, provide DEC ID number(s):
$i v$. If yes to (i), (ii) or (iii) above, describe current status of site(s):

- If yes, DEC site ID number:
- Describe the type of institutional control (e.g., deed restriction or easement):
- Describe any use limitations:
- Describe any engineering controls:
- Will the project affect the institutional or engineering controls in place?
- Explain: $\qquad$


## E.2. Natural Resources On or Near Project Site

a. What is the average depth to bedrock on the project site?
b. Are there bedrock outcroppings on the project site?
If Yes, what proportion of the site is comprised of bedrock outcroppings?
c. Predominant soil type(s) present on project site:
d. What is the average depth to the water table on the project site? Average:
e. Drainage status of project site soils: $\square$ Well Drained:
$\square$ Moderately Well Drained:
$\square$ Poorly Drained

f. Approximate proportion of proposed action site with slopes: \begin{tabular}{rl}
$\square$ \& $0-10 \%$ : <br>
$\square$ \& $10-15 \%$ : <br>
$\square$ \& $15 \%$ or greater:

$\quad$

$\quad-\quad \%$ of site <br>
\hline
\end{tabular}

g. Are there any unique geologic features on the project site?

If Yes, describe:
h. Surface water features.
i. Does any portion of the project site contain wetlands or other waterbodies (including streams, rivers, ponds or lakes)?
ii. Do any wetlands or other waterbodies adjoin the project site?

If Yes to either $i$ or $i i$, continue. If No, skip to E.2.i.
iii. Are any of the wetlands or waterbodies within or adjoining the project site regulated by any federal, state or local agency?
$i v$. For each identified regulated wetland and waterbody on the project site, provide the following information:

- Streams: Name Landsman Kill (not adjacent) Classification C(t)
- Lakes or Ponds: Name Classification
- Wetlands: Name Approximate Size
- Wetland No. (if regulated by DEC)
$\qquad$
Are any of the above water bodies listed in the most recent compilation of NYS water quality-impaired waterbodies?
If yes, name of impaired water body/bodies and basis for listing as impaired:

| i. Is the project site in a designated Floodway? | $\square \mathrm{Yes}$ \} { } ^ {  No  } |
| :---: | :---: |
| j. Is the project site in the 100-year Floodplain? | $\square \mathrm{Yes}$ \}  No  |
| k. Is the project site in the 500-year Floodplain? | $\square \mathrm{Yes}$ \} \mathrm { No } ^ {  a  } |
| 1. Is the project site located over, or immediately adjoining, a primary, principal or sole source aquifer? If Yes: <br> i. Name of aquifer: Principal Aquifer | $\square \mathrm{Yes} \square \mathrm{No}$ |

m . Identify the predominant wildlife species that occupy or use the project site: squirrels
n. Does the project site contain a designated significant natural community?
$\square$ Yes $\square$ No
If Yes:
i. Describe the habitat/community (composition, function, and basis for designation):
ii. Source(s) of description or evaluation:
iii. Extent of community/habitat:

- Currently: ___ acres
- Following completion of project as proposed: $\qquad$ acres
- Gain or loss (indicate + or -):
acres
o. Does project site contain any species of plant or animal that is listed by the federal government or NYS as endangered or threatened, or does it contain any areas identified as habitat for an endangered or threatened species?
If Yes:
i. Species and listing (endangered or threatened):

Northern Long-eared Bat
$\square$
p. Does the project site contain any species of plant or animal that is listed by NYS as rare, or as a species of $\square$ Yes $\square$ No special concern?
If Yes:
i. Species and listing:
q. Is the project site or adjoining area currently used for hunting, trapping, fishing or shell fishing?

If yes, give a brief description of how the proposed action may affect that use:

## E.3. Designated Public Resources On or Near Project Site

a. Is the project site, or any portion of it, located in a designated agricultural district certified pursuant to

If Yes, provide county plus district name/number:
b. Are agricultural lands consisting of highly productive soils present? $\quad \square$ Yes $\square$ No i. If Yes: acreage(s) on project site? $\qquad$ ii. Source(s) of soil rating(s):
c. Does the project site contain all or part of, or is it substantially contiguous to, a registered National Natural Landmark?
If Yes:
i. Nature of the natural landmark: $\quad \square$ Biological Community $\quad \square$ Geological Feature
ii. Provide brief description of landmark, including values behind designation and approximate size/extent:
d. Is the project site located in or does it adjoin a state listed Critical Environmental Area?

If Yes:
i. CEA name:
ii. Basis for designation:
iii. Designating agency and date:
e. Does the project site contain, or is it substantially contiguous to, a building, archaeological site, or district which is listed on the National or State Register of Historic Places, or that has been determined by the Commissioner of the NYS Office of Parks, Recreation and Historic Preservation to be eligible for listing on the State Register of Historic Places?

## If Yes:

i. Nature of historic/archaeological resource: $\square$ Archaeological Site $\square$ Historic Building or District
ii. Name: Rhinebeck Village Historic District Boundary Increase
iii. Brief description of attributes on which listing is based:
*See Phase 1 Report by Beth Selig as attached Exhibit E
f. Is the project site, or any portion of it, located in or adjacent to an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory?
g. Have additional archaeological or historic site(s) or resources been identified on the project site?

If Yes:
i. Describe possible resource(s):
ii. Basis for identification:
h. Is the project site within fives miles of any officially designated and publicly accessible federal, state, or local $\square$ Yes $\square$ No scenic or aesthetic resource?
If Yes:
i. Identify resource:
ii. Nature of, or basis for, designation (e.g., established highway overlook, state or local park, state historic trail or scenic byway, etc.):
iii. Distance between project and resource: miles.
i. Is the project site located within a designated river corridor under the Wild, Scenic and Recreational Rivers $\quad \square$ Yes $\square$ No Program 6 NYCRR 666?
If Yes:
i. Identify the name of the river and its designation: $\qquad$
ii. Is the activity consistent with development restrictions contained in 6NYCRR Part 666?

## F. Additional Information

Attach any additional information which may be needed to clarify your project.
If you have identified any adverse impacts which could be associated with your proposal, please describe those impacts plus any measures which you propose to avoid or minimize them.

## G. Verification

I certify that the information provided is true to the best of my knowledge.



Disclaimer: The EAF Mapper is a screening tool intended to assist project sponsors and reviewing agencies in preparing an environmental assessment form (EAF). Not all questions asked in the EAF are answered by the EAF Mapper. Additional information on any EAF question can be obtained by consulting the EAF Workbooks. Although the EAF Mapper provides the most up-to-date digital data available to DEC, you may also need to contact local or other data sources in order to obtain data not provided by the Mapper. Digital data is not a substitute for agency determinations.


| B.i.i [Coastal or Waterfront Area] | No |
| :--- | :--- |
| B.i.ii [Local Waterfront Revitalization Area] | No |
| C.2.b. [Special Planning District] | Digital mapping data are not available or are incomplete. Refer to EAF <br> Workbook. |
| E.1.h [DEC Spills or Remediation Site - <br> Potential Contamination History] | Digital mapping data are not available or are incomplete. Refer to EAF <br> Workbook. |
| E.1.h.i [DEC Spills or Remediation Site - <br> Listed] | Digital mapping data are not available or are incomplete. Refer to EAF <br> Workbook. |
| E.1.h.i [DEC Spills or Remediation Site - <br> Environmental Site Remediation Database] | Digital mapping data are not available or are incomplete. Refer to EAF <br> Workbook. |
| E.1.h.iii [Within 2,000' of DEC Remediation | No |
| Site] | No |
| E.2.g [Unique Geologic Features] | No |
| E.2.h.i [Surface Water Features] | Yes |
| E.2.h.ii [Surface Water Features] | Yes - Digital mapping information on local and federal wetlands and |
| waterbodies is known to be incomplete. Refer to EAF Workbook. |  |
| E.2.h.iii [Surface Water Features] | No |
| E.2.h.v [Impaired Water Bodies] | No |
| E.2.i. [Floodway] | No |
| E.2.j. [100 Year Floodplain] | No |
| E.2.k. [500 Year Floodplain] | Yes |
| E.2.I. [Aquifers] | Principal Aquifer |
| E.2.I. [Aquifer Names] | No |
| E.2.n. [Natural Communities] | Yes |
| E.2.o. [Endangered or Threatened Species] |  |


| E.2.o. [Endangered or Threatened Species - <br> Name] | Northern Long-eared Bat |
| :--- | :--- |
| E.2.p. [Rare Plants or Animals] | No |
| E.3.a. [Agricultural District] | No |
| E.3.c. [National Natural Landmark] | No |
| E.3.d [Critical Environmental Area] | No |
| E.3.e. [National or State Register of Historic <br> Places or State Eligible Sites] | Yes - Digital mapping data for archaeological site boundaries are not <br> available. Refer to EAF Workbook. |
| E.3.e.ii [National or State Register of Historic | Rhinebeck Village Historic District Boundary Increase |
| Places or State Eligible Sites - Name] | Yes |
| E.3.f. [Archeological Sites] | No |
| E.3.i. [Designated River Corridor] |  |

## Exhibit A

# Preliminary Stormwater Pollution Prevention Plan 

Dutchess Shepard, LLC<br>6 Mulberry Street<br>Village of Rhinebeck

April 4, 2023
Revised September 2, 2023


208 Creamery Road
Hopewell Junction, NY 12533

## Table of Contents

1 Executive Summary ..... 1
2 Project Description ..... 1
2.1 Pre-Development Conditions ..... 1
2.2 Post-Development Conditions ..... 1
2.3 Soil Survey Data ..... 2
3 Construction Sequencing ..... 3
4 Erosion and Sediment Control Plan ..... 3
4.1 Erosion and Sediment Control Measures ..... 3
4.2 Pollution Prevention Controls ..... 5
4.3 Soil Restoration ..... 7
5 Stormwater Management Plan ..... 7
5.1 Hydrologic Analysis ..... 8
5.1.1 Rainfall Data ..... 8
5.1.2 Unified Stormwater Sizing Criteria ..... 9
5.1.2.1 Water Quantity Control. ..... 9
5.1.3 Comparison of Peak Discharge Rates ..... 9
5.1.3.1 Water Quality Treatment. ..... 9
6 Post Construction Requirements ..... 9
6.1 Inspection and Maintenance ..... 9
7 Conclusion ..... 11
Tables
Table 1: USDA Soil Data ..... 2
Table 2: Soil Restoration ..... 7
Appendices
A HydroCAD Analysis
B Soil Report
C Rainfall Data
D WQv and RRv Calculations

## 1 Executive Summary

This Stormwater Pollution Prevention Plan (SWPPP) and accompanying project plans have been prepared for the construction activities associated with the Dutchess Shepard Redevelopment Project located in the Village of Rhineback, New York. The stormwater management, pollution prevention, and erosion and sediment control measures identified and detailed in this SWPPP and on the accompanying project plans have been designed in accordance with the requirements of the Town of Beekman and the New York State Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) Phase II technical standards.

The proposed project:

1. Maintains the existing drainage patterns, as much as possible.
2. Controls increases in the rate of stormwater runoff resulting from the proposed development without adversely affecting adjacent or downstream properties or receiving watercourses or bodies.
3. Reducing potential stormwater quality impacts and soil erosion resulting from stormwater runoff generated both during and after construction.

The pre- and post-development stormwater runoff conditions have been reviewed and evaluated. The proposed stormwater management facilities have been designed to provide both water quality and quantity controls. Stormwater runoff will be detained, treated, and released at a rate equal to or less than that which existed prior to development of the project site.

## 2 Project Description

Dutchess Shepard, LLC is the owner of 6 Mulberry Street in the Village of Rhineback The subject lot is 1.44 acres and located on the west side of Mulberry Street, south of East Market Street. The property is located in the RB-35 Zoning District. The project program includes the redevelopment of the existing site into single and multi-family residential units.

### 2.1 Pre-Development Conditions

The site is currently developed as a school which includes a 10,000 square foot building footprint, 10,000 square foot asphalt parking area, playground, and lawn areas. The building no longer functions as a school; however the gym is still used by local groups for sport activities. There building is fed by municipal water. Septic is treated with an on-site septic system.

The existing topography is generally flat. The existing drainage patterns of the project site generally drain in all directions towards the property lines. There are a few existing drainage structures that collect the parking lot and drain to the roadway drainage collection system.

There are no wetland, wetland buffers or watercourses in the vicinity of the project.

### 2.2 Post-Development Conditions

The proposed project includes the removal of the parking area, and partial demolition of the school building. The remaining portion of the building will be redeveloped into a multi-family residential
units. The remainder of the property will be subdivided to create four (4) single family lots. Each lot will have a driveway and septic system. Water service will be provided by the municipal water system. Underground infiltration system will be installed where feasible to collect and treat the runoff generated by the new rood and driveway areas.

The Multi-family building will have a parking lot to the rear. Water from the 17 -bedroom will be treated in an on-site septic system. Underground infiltration systems will be installed to collect and treat the stormwater runoff from the roof area and parking lot.

### 2.3 Soil Survey Data

The United States Department of Agriculture (USDA) Soil Conservation Service Soil Survey for Dutchess County was reviewed. The surficial soil conditions for the study area are shown in Appendix $\underline{B}$ The soil data for each of the soil types is summarized in Table 1 below.

Table 1: USDA Soil Data

| Map <br> Symbol | Description | Depth to <br> Groundwater (ft) | Depth to <br> Bedrock (in) | Hydrologic <br> Soil Group |
| :---: | :--- | :---: | :---: | :---: |
| DwC | Dutchess-Cardigan Complex | $80^{\prime \prime+}$ | $80^{\prime \prime}+$ | B |
| HF | Haven-Urban Land | $80^{\prime \prime}+$ | $20^{\prime \prime}$ to $40 "$ | C |

The Soil Conservation Service defines the hydrologic soil groups as follows:

- Type A Soils: Soils having a high infiltration rate and low runoff potential when thoroughly wet. These soils consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.
- Type B Soils: Soils having a moderate infiltration rate when thoroughly wet and consists mainly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately course textures. These soils have a moderate rate of water transmission.
- Type C Soils: Soils having a low infiltration rate when thoroughly wet and consists chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine-to-fine texture. These soils have a low rate of water transmission.
- Type D Soils: Soils having a very low infiltration rate and high runoff potential when thoroughly wet. These soils consist chiefly of clays that have high shrink-swell potential, soils that have a permanent high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very low rate of water transmission.


## 3 Construction Sequencing

The total disturbance of the proposed project is 1.4 acres. The proposed project will be completed in Multiple phases. The construction sequencing is outlined on the accompanying plans and is provided below. The construction sequencing is as follows:

1. The Contractor shall flag the limits of disturbance prior to the commencement of construction. Bright orange construction fencing shall be used to demarcate the limits of disturbance to ensure over clearing does not occur.
2. All temporary erosion and sediment control measures (e.g., stabilized construction entrances, silt fencing, storm drain inlet protection, etc.) shall be installed as shown on the project plans. Temporary erosion and sediment control measures shall be constructed, stabilized, and functional before site disturbance begins within their tributary areas.
3. Stake out the locations of the limits of disturbance, proposed stormwater management facilities, and improvements (e.g., roadways, etc.).
4. Demolition of existing features.
5. Construction of the multi-family building and parking on Lot \#3.
6. Rough grade the site. Place surplus material in the temporary soil stockpile locations shown on the project plans.
7. Develop the single-family lots are dictated by the market.
8. Finish grading and stabilize all disturbed areas. All erosion and sediment control measures must be left in place to prevent sediment from entering the stormwater practices.
9. Remove all temporary erosion and sediment control measures. Immediately stabilize the areas disturbed during their removal. Establish permanent vegetative cover.

## 4 Erosion and Sediment Control Plan

This SWPPP and accompanying project plans identify both temporary and permanent erosion and sediment control measures, which have been designed in accordance with the New York State Standards and Specifications for Erosion and Sediment Control, latest revision. Temporary erosion and sediment control measures will be implemented during construction to minimize soil erosion and control sediment transport off-site. Permanent erosion and sediment control measures will be implemented after construction to control the quality and quantity of stormwater runoff from the developed site.

### 4.1 Erosion and Sediment Control Measures

Temporary erosion and sediment control measures to be utilized during construction generally include the following:

1. Stabilized Construction Entrance - Prior to construction, stabilized construction entrances shall be installed to reduce the tracking of sediment onto public roadways. Construction traffic must enter and exit the site at the stabilized construction entrance. The entrance shall be maintained in good condition, which will control tracking of sediment onto public rights-ofway or streets. When necessary, the placement of additional aggregate atop the filter fabric shall be done to assure the minimum thickness is maintained. All sediments and soils spilled, dropped, or washed onto the public rights-of-way must be removed immediately. Periodic inspection and needed maintenance shall be provided after each substantial rainfall event.
2. Dust Control - Water trucks shall be used, as needed, during construction to reduce dust generated on the site. Dust control must be provided by the general contractor to a degree that is acceptable to the owner/operator, and in compliance with the applicable local and state dust control requirements.
3. Temporary Soil Stockpile - Materials, such as topsoil, shall be temporarily stockpiled (if necessary) on the site during the construction process. Stockpiles shall be located in an area away from storm drainage, water bodies and/or courses, and shall be properly protected from erosion by a surrounding silt fence barrier or hay bales when located on paved areas.
4. Silt Fencing - Prior to the initiation of and during construction activities, silt fencing shall be established along the perimeter of all areas to be disturbed as a result of the construction which lie up gradient of water courses or adjacent properties. These barriers may extend into nonimpact areas to ensure adequate protection of adjacent lands. Clearing and grubbing shall be performed only as necessary for the installation of the sediment control barrier. To ensure effectiveness of the silt fencing, daily inspections and inspections immediately after significant storm events shall be performed by site personnel. Maintenance of the fence shall be performed as needed.
5. Temporary Seeding - Within seven days after construction activity ceases on any particular area of the site, all disturbed areas where there shall not be construction for longer than 14 days shall be temporarily seeded and mulched to minimize erosion and sediment loss.
6. Temporary Sediment Basin - A temporary sediment basin shall be constructed to intercept sediment laden runoff, reduce the amount of sediment leaving the disturbed areas, and protect drainage ways, properties, and rights-of-way. Projects that have proposed stormwater ponds can be used as temporary sediment basins during construction. Temporary sediment basins shall be inspected at least every seven calendar days. All damages caused by soil erosion and construction equipment shall be repaired upon discovery. Accumulated sediment shall be removed from the sediment basin/trap when it reaches 50 percent of the design capacity and shall not exceed 50 percent. Sediment shall not be placed downstream from the embankment, adjacent to a stream, or floodplain.
7. Dewatering - Dewatering, if required, shall not be discharged directly into wetlands, water courses, water bodies, and storm sewer systems. Proper methods and devices shall be utilized to the extent permitted by law, such as pumping water into temporary sediment basins, providing surge protection at the inlet and outlet of pumps, floating the intake of the pump, or other methods to minimize and retain the suspended solids.

Permanent erosion and sediment control measures to be utilized after construction generally include the following:

1. Establishment of Permanent Vegetation - Disturbed areas that are not covered by impervious surfaces shall be seeded in accordance with the accompanying plans. The type of seed, mulch, and maintenance measures shall be followed. All areas at final grade shall be seeded and mulched within seven (7) days after completion of the major construction activity. All seeded areas shall be protected with mulch and/or hay. Final site stabilization is achieved when all soil-disturbing activities at the site has been completed and a uniform, perennial vegetative cover with a density of 80 percent has been established or equivalent stabilization measures (such as the use of mulches or geotextiles) have been employed on all unpaved areas and areas not covered by permanent structures.
2. Final Seeding and Planting - Final seeding and planting shall be installed as shown on the accompanying plans. Final seeding and planting will help minimize erosion and sediment loss.
3. Rock Outlet Protection - Rock outlet protection shall be installed at the locations as shown on the accompanying plans. The installation of rock outlet protection will reduce the depth, velocity, and energy of water, such that the flow will not erode the receiving water course or water body.

Specific erosion and sediment control measures, inspection frequency, and remediation procedures are provided in the subsequent sections and on the accompanying project plans.

### 4.2 Pollution Prevention Controls

Good housekeeping practices are designed to maintain a clean and orderly work environment. Good housekeeping measures shall be maintained throughout the construction process by those parties involved with the direct care and development of the site. The following measures should be implemented to control the possible exposure of harmful substances and materials to stormwater runoff:

1. Material resulting from the clearing and grubbing operation shall be stockpiled away from storm drainage, water bodies and/or watercourses and surrounded with adequate erosion and sediment control measures. Soil stockpile locations shall be exposed no longer than 14 days before seeding.
2. Equipment maintenance areas shall be protected from stormwater flows and shall be supplied with appropriate waste receptacles for spent chemicals, solvents, oils, greases, gasoline, and any pollutants that might contaminate the surrounding habitat and/or water supply. Equipment wash-down zones shall be located within areas draining to sediment control devices.
3. The use of detergents for large-scale (i.e., vehicles, buildings, pavement surfaces, etc.) washing is prohibited.
4. Material storage locations and facilities (i.e., covered storage areas, storage sheds, etc.) shall be located onsite and shall be stored according to the manufacturer's standards in a dedicated staging area. Chemicals, paints, solvents, fertilizers, and other toxic material must be stored in waterproof containers. Runoff containing such materials must be collected, removed from the site, treated and disposed at an approved solid waste or chemical disposal facility.
5. Hazardous spills shall be immediately contained to prevent pollutants from entering the surrounding habitat and/or water supply. Spill Kits shall be provided onsite and shall be displayed in a prominent location for ease of access and use. Spills greater than five (5) gallons shall be reported to the NYSDEC Response Unit at 1-800-457-7362. In addition, a record of the incident(s) and/or notifications shall be documented and attached to the SWPPP.
6. Portable sanitary waste facilities shall be provided onsite for workers and shall be properly maintained.
7. Dumpsters and/or debris containers shall be located onsite and shall be of adequate size to manage respective materials. Regular collection and disposal of wastes shall occur as required.
8. Temporary concrete washout facilities should be located a minimum of 50 feet from storm drain inlets, open drainage facilities, and watercourses. Each facility should be located away from construction traffic or access areas to prevent disturbance or tracking. A sign should be installed adjacent to each washout facility to inform concrete equipment operators to utilize the proper facilities. When temporary concrete washout facilities are no longer required for the work, the hardened concrete shall be removed and disposed of. Materials used to construct the temporary concrete washout facilities shall be removed and disposed of. Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities shall be backfilled and/or repaired, seeded, and mulched for final stabilization.
9. Non-stormwater components of site discharge must be clean water. Water used for construction, which discharges from the site, must originate from a public water supply or private well approved by the Health Department. Water used for construction that does not originate from an approved public supply must not discharge from the site. It can be retained in the ponds until it infiltrates and evaporates.

### 4.3 Soil Restoration

The soils within in the limits of disturbance are Type A soils. In accordance with Table 5.3 of the New York State Stormwater Management Design Manual, the soils shall be restored as outlined in Table 2 below:

Table 2: Soil Restoration

| Type of Soil Disturbance | Soil Restoration Requirement | Comment |
| :--- | :--- | :--- |
| $\begin{array}{l}\text { No soil disturbance } \\ \text { (preservation of natural features) }\end{array}$ | Restoration not permitted | $\begin{array}{l}\text { Protect from any ongoing construction } \\ \text { activity }\end{array}$ |
| Minimal soil disturbance | Restoration not permitted | Clearing and grubbing activities |
| $\begin{array}{l}\text { Areas where topsoil is stripped } \\ \text { only (no change in grade) }\end{array}$ | Apply 6" of topsoil | $\begin{array}{l}\text { Protect from any ongoing construction } \\ \text { activity }\end{array}$ |
| Areas of cut or fill | Aerate and apply 6" of topsoil | $\begin{array}{l}\text { Aeration includes the use of machines } \\ \text { such as tractor-drawn implements with } \\ \text { coulters making a narrow slit in the } \\ \text { soils, a roller with many spikes making } \\ \text { indentations in the soil, or prongs with } \\ \text { function like a mini-subsoiler. }\end{array}$ |
| $\begin{array}{l}\text { Heavy traffic areas on site } \\ \text { (especially in a zone 5-25' around } \\ \text { buildings but not within a 5' } \\ \text { perimeter around foundation walls) }\end{array}$ | $\begin{array}{l}\text { Apply full soil restoration (de- } \\ \text { compaction and compost } \\ \text { enhancement) }\end{array}$ | $\begin{array}{l}\text { Deep rip the affected thickness of the } \\ \text { exposed subsoil material, aggressively } \\ \text { fracturing it before the protected }\end{array}$ |
| topsoil is reapplied on site. De- |  |  |
| compact simultaneously through the |  |  |
| restored topsoil layer and the upper |  |  |
| half of the affected subsoil. |  |  |$\}$

During periods of relatively low to moderate subsoil moisture, the disturbed soils are returned to rough grade and the following soil restoration steps are applied:

1. Apply 3 -inches of compost over subsoil.
2. Till compost into subsoil to a depth of at least 12 " using a cat-mounted ripper, tractormounted disc, or tiller, mixing and circulating air and compost into subsoils.
3. Rock-pick until uplifted stone/rock materials of 4-inches and larger size are cleaned off the site.
4. Apply topsoil to a depth of 6 -inches.
5. Vegetate as required by the project plans.

## 5 Stormwater Management Plan

The goals of this Stormwater Management Plan are to:

1. Analyze the peak rate of runoff under pre- and post-development conditions.
2. Maintain the pre-development rate of runoff in order to minimize impacts to adjacent or downstream properties.
3. Minimize the impact of the quality of runoff exiting the site.

These objectives will be met by applying Green Infrastructure Practices and Best Management Practices (BMPs). Stormwater runoff from the proposed project will be collected and conveyed to the proposed stormwater management facilities. Stormwater runoff will be detained, treated, and released at a rate equal to or less than that which existed prior to development of the project site.

### 5.1 Redevelopment

Per NYSDEC guidelines, the proposed stormwater will be designed using the redevelopment standards (Chapter 9). Credit for the redeveloped existing impervious will be taken in the Water Quality (WQv) Calculations.

### 5.2 Hydrologic Analysis

The study area was made up of one subcatchment for pre-development conditions and postdevelopment conditions. This was dictated by watershed conditions, methods of collection, conveyance, and points of discharge. Watershed delineations were defined using the surveyed site topography.

HydroCAD, a Computer-Aided-Design (CAD) program, was used to analyze the hydrologic characteristics of the pre-development watershed conditions, post-development watershed conditions, and proposed stormwater management systems. HydroCAD has the capability of computing hydrographs (which represents discharge rates characteristic of specified watershed conditions, precipitation, and geologic factors), combining hydrographs, and routing flows though pipes, streams, channels, and ponds.

### 5.2.1 Rainfall Data

Rainfall data utilized in the modeling and analysis was obtained from National Weather Service (NWS) Technical Paper 40 (TP-40), Rainfall Frequency Atlas of the U.S. Weather Bureau, published by the U.S. Department of Commerce. A Type III rainfall distribution was used to evaluate the pre- and post-development stormwater runoff conditions for the 1-, 10-, and 100-year 24-hour storm events for Dutchess County. Rainfall data specific to the portion of Dutchess County under consideration is provided in Table 3 below.

Table 3: Rainfall Data

| Storm Event | 24-Hour Rainfall |
| :---: | :---: |
| 1-year | 2.59 inches |
| 10 -year | 4.66 inches |
| 100 -year | 8.26 inches |

### 5.2.2 Unified Stormwater Sizing Criteria

### 5.2.2.1 Water Quantity Control

### 5.2.3 Comparison of Peak Discharge Rates

A comparison of the pre- and post-development peak discharge rates is provided in Table 9 below.
Table 6: Comparison of Pre- \& Post-Development Peak Discharge Rates

| Storm Event | Pre (cfs) | Post (cfs) | Difference |
| :---: | :---: | :---: | :---: |
| 1 -year | 2.18 | 0.5 | $-73 \%$ |
| 10 -year | 5.16 | 2.69 | $-48 \%$ |
| 100 -year | 10.41 | 7.42 | $-28 \%$ |

Infiltration systems will mitigate peak flows. The on-site soils are very suitable for infiltration.
Comparison of the peak discharge rates for pre- and post-development watershed conditions demonstrates that the peak rate of runoff from the proposed development will remain the nearly the same or not be increased. Therefore, the proposed development will not adversely impact the downstream or adjacent properties, receiving water bodies or courses, or wetlands. The results of the computer modeling used to analyze the pre- and post-development watershed conditions are presented in Appendix A.

### 5.2.3.1 W ater Quality Treatment

The Water Quality Objective will be met by designing the infiltration and pretreatment based in the Redevelopment Criteria set forth by the NYSDEC.

## 6 Post Construction Requirements

### 6.1 Inspection and Maintenance

Post-construction inspections and maintenance shall be performed by the homeowners. Inspections and maintenance for the various site components and stormwater management facilities shall be performed in accordance with the accompanying project plans and this SWPPP.

A summary of the general site inspection and maintenance parameters is provided in the table below
Table 7: General Site Post-Construction Inspection and Maintenance

| Maintenance Item | Frequency | Description of Inspection Parameters | Description of Remedy Procedures |
| :---: | :---: | :---: | :---: |
| Site Structures | Annual \& After Major Storms | -Accumulated sediment in catch basin sumps <br> -Accumulated debris and litter <br> -Damage or fatigue of storm structures or associated components <br> -Accumulation of pollutants, including oils or grease, in catch basin sumps | -Remove <br> -Remove <br> -Replace and/or repair, as necessary <br> -Remove pollutants from catch basins. Replace and/or repair pollutant source. |
| Pavement | $\begin{gathered} \text { Biannual/ } \\ \text { Annual } \end{gathered}$ | -Accumulated sediment in paved areas <br> -Accumulated debris and litter | -Remove (sweep min. 2 times/year) <br> -Remove |
| Embankments | Annual | -Differential settlement of embankments <br> -Embankment erosion <br> -Animal burrows <br> -Cracking, bulging, or sliding of embankment | -Stabilize and restore to original specs <br> - Stabilize and restore to original specs <br> -Remove <br> - Stabilize and restore to original specs |
| Grass and Landscaped areas | Annual | -Vegetation: $80 \%$ coverage + less than $15 \%$ invasive plant species <br> -Unauthorized plantings <br> -Undesirable vegetative growth <br> -Accumulated debris and litter | -Restore original specs <br> -Remove <br> -Mow a min. of 3 times/year. May increase for aesthetic reasons. <br> -Remove |
| Winter Maintenance | Monthly | -Accumulation of snow and ice on catch basins, inlet and outlet structures, and end sections <br> -Stock piled snow near inlets and outlets <br> -Remaining deicing materials | -Remove <br> -Remove <br> -Remove in early spring by sweeping |
| Swales | Monthly | -Erosion of side slopes <br> -Formation of rills or gullies <br> -Excess grass growth <br> -Undesirable vegetative growth <br> -Accumulated debris, litter, or sediment <br> -Residual deicing materials (sand) | - Stabilize and restore to original specs <br> -Repair and restore to original specs <br> -Mow <br> -Remove <br> -Remove <br> -Remove \& replace any damaged vegetation |

## 7 Conclusion

This Stormwater Pollution Prevention Plan for the for Dutchess Shepard incorporates an Erosion and Sediment Control Plan and Stormwater Management Plan. The SWPPP identifies the measures to be implemented during construction to minimize soil erosion and control sediment transport offsite, and after construction to control the water quality and quantity of stormwater runoff from the developed site to minimize adverse effects to downstream conditions.

This Stormwater Pollution Prevention Plan has been developed in accordance with the requirements of the Town of Beekman and the New York State Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) Phase II technical standards. It is our opinion that the proposed project will not adversely impact adjacent or downstream properties, or receiving surface waters or wetlands, if the erosion and sediment control measures and stormwater management facilities are properly constructed, and maintained in accordance with the requirements outlined herein.

## Appendix A

HydroCAD Analysis


## Existing



## Mulberry Subdivision

Prepared by Hildenbrand Engineering, PLLC
HydroCAD® 10.10-6a s/n 11988 © 2020 HydroCAD Software Solutions LLC

## Rainfall Events Listing

| Event\# | Event <br> Name | Storm Type | Curve | Mode | Duration <br> (hours) | B/B Depth <br> (inches) AMC   <br> 1 1-Year Type III 24-hr  Default <br> 2 10-Year Type III 24-hr  Default <br> 3 100-Year Type III 24-hr  Default <br>    24.00 1 <br> 2.59 1 4.66 2  <br>     8.26 <br> 2     |
| ---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: |

## Summary for Subcatchment 1S: Existing

Runoff $=\quad 2.18 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 0.158$ af, Depth= $1.32^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"

|  | Area (sf) | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11,705 | 98 | Building |  |  |
| * | 10,920 | 98 | Parking |  |  |
|  | 40,189 | 79 | <50\% Grass cover, Poor, HSG B |  |  |
|  | 62,814 | 86 | Weighted Average |  |  |
|  | 40,189 |  | 63.98\% Pervious Area |  |  |
|  | 22,625 |  | 36.02\% Imp | ervious Ar |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$ |  | Slope $(\mathrm{ft} / \mathrm{ft})$ | Velocity (ft/sec) | $\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$ | Description |
| 6.0 |  |  |  |  | Direct Entry |

Subcatchment 1S: Existing


## Summary for Subcatchment 1S: Existing

Runoff $=\quad 5.16$ cfs @ 12.09 hrs, Volume $=\quad 0.379$ af, Depth= $3.15^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"

|  | Area (sf) | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11,705 | 98 | Building |  |  |
| * | 10,920 | 98 | Parking |  |  |
|  | 40,189 | 79 | <50\% Grass cover, Poor, HSG B |  |  |
|  | 62,814 | 86 | Weighted Average |  |  |
|  | 40,189 |  | 63.98\% Pervious Area |  |  |
|  | 22,625 |  | 36.02\% Imp | ervious Ar |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$ |  | Slope $(\mathrm{ft} / \mathrm{ft})$ | Velocity (ft/sec) | $\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$ | Description |
| 6.0 |  |  |  |  | Direct Entry |

Subcatchment 1S: Existing


## Summary for Subcatchment 1S: Existing

Runoff $=\quad 10.41$ cfs @ 12.09 hrs, Volume $=0.791$ af, Depth $=6.58{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"

|  | Area (sf) | CN | Description |
| :--- | ---: | ---: | :--- |
| * | 11,705 | 98 | Building |
| 10,920 | 98 | Parking |  |
| 40,189 | 79 | $<50 \%$ Grass cover, Poor, HSG B |  |
| 62,814 | 86 | Weighted Average |  |
|  | 40,189 |  | 63.98\% Pervious Area |
| 22,625 |  | $36.02 \%$ Impervious Area |  |


| Tc <br> $(\mathrm{min})$ | Length <br> (feet) | Slope <br> (ft/ft) $)$ | Velocity <br> $(\mathrm{ft} / \mathrm{sec})$ | Capacity <br> $(\mathrm{cfs})$ |
| ---: | ---: | ---: | ---: | :--- |

Subcatchment 1S: Existing



## Mulberry Subdivision

Prepared by Hildenbrand Engineering, PLLC
HydroCAD® 10.10-6a s/n 11988 © 2020 HydroCAD Software Solutions LLC

## Rainfall Events Listing

| Event\# | Event <br> Name | Storm Type | Curve | Mode | Duration <br> (hours) | B/B Depth <br> (inches) AMC   <br> 1 1-Year Type III 24-hr  Default <br> 2 10-Year Type III 24-hr  Default <br> 3 100-Year Type III 24-hr  Default <br>    24.00 1 <br> 2.59 1 4.66 2  <br>     8.26 <br> 2     |
| ---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: |

Summary for Subcatchment 2S: Lot \#1 Remainder
Runoff $=0.04$ cfs @ 12.11 hrs, Volume= $\quad 0.004$ af, Depth $=0.36{ }^{\prime \prime}$
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"


Subcatchment 2S: Lot \#1 Remainder


Summary for Subcatchment 3S: Lot \#2 Remainder
Runoff $=0.04$ cfs @ 12.11 hrs, Volume= 0.004 af, Depth= $0.36{ }^{\prime \prime}$
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"


Subcatchment 3S: Lot \#2 Remainder


Summary for Subcatchment 4S: Lot \#3 Remainder
Runoff $=0.34$ cfs @ 12.09 hrs, Volume= 0.027 af, Depth= $0.66{ }^{\prime \prime}$
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"


Subcatchment 4S: Lot \#3 Remainder


Summary for Subcatchment 5S: Lot \#4 Remainder
Runoff $=0.04$ cfs @ 12.12 hrs, Volume= 0.004 af, Depth= $0.33^{\prime \prime}$
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"


Subcatchment 5S: Lot \#4 Remainder


Summary for Subcatchment 6S: Lot \#5 Remainder
Runoff $=0.04$ cfs @ 12.11 hrs, Volume= 0.005 af, Depth= $0.36{ }^{\prime \prime}$
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"


Subcatchment 6S: Lot \#5 Remainder


Summary for Subcatchment 8S: Lot \#1 Roof
Runoff $=\quad 0.11$ cfs @ 12.07 hrs, Volume= 0.009 af, Depth= 2.36"

Routed to Pond 13P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"

|  | Area (sf) | CN | Description |
| :--- | ---: | :--- | :--- |
| 1,953 98 Roof Area <br> 1,953  $100.00 \%$ Impervious Area |  |  |  |

\(\left.$$
\begin{array}{rr}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array}\end{array}
$$ $$
\begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array}
$$ $$
\begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}
$$ \begin{array}{r}Capacity <br>

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

Subcatchment 8S: Lot \#1 Roof


Summary for Subcatchment 9S: Lot \#2 Roof
Runoff $=\quad 0.11$ cfs @ 12.07 hrs, Volume= $\quad 0.009$ af, Depth= 2.36"
Routed to Pond 14 P : Infiltration

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"

|  | Area (sf) | CN | Description |
| :--- | ---: | ---: | :--- |
| 1,953 98 Roof Area <br> 1,953  $100.00 \%$ Impervious Area |  |  |  |

$\left.\begin{array}{rrrrl}\begin{array}{r}\text { Tc }\end{array} & \begin{array}{r}\text { Length } \\ (\mathrm{min})\end{array} & \begin{array}{r}\text { Slope } \\ \text { (feet) }\end{array} & \begin{array}{r}\text { Velocity } \\ \text { (ft/ft) }\end{array} & \begin{array}{r}\text { Capacity } \\ \text { (ft/sec) }\end{array}\end{array} \begin{array}{c}\text { (cfs) }\end{array}\right)$

Subcatchment 9S: Lot \#2 Roof


## Summary for Subcatchment 10S: Lot \#3 Roof

Runoff $=\quad 0.46$ cfs @ 12.07 hrs, Volume= 0.036 af, Depth= 2.36"

Routed to Pond 17P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"


## Summary for Subcatchment 11S: Lot \#4 Roof

Runoff $=0.11$ cfs @ 12.07 hrs, Volume= 0.009 af, Depth= 2.36"
Routed to Pond 15P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"

| Area (sf) |  | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | 1,953 | 98 | Roof Area |  |  |
|  | 1,953 |  | 100.00\% Im | pervious A |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$ | Length (feet) | Slope <br> (ft/ft) | Velocity (ft/sec) | $\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$ | Description |

## Subcatchment 11S: Lot \#4 Roof



## Summary for Subcatchment 12S: Lot \#5 Roof

Runoff $=\quad 0.11$ cfs @ 12.07 hrs, Volume= 0.009 af, Depth= 2.36"
Routed to Pond 16P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.59"

|  | Area (sf) | CN | Description |
| :--- | ---: | ---: | :--- |
| 1,944 98 Roof Area <br> 1,944  $100.00 \%$ Impervious Area |  |  |  |

\(\left.$$
\begin{array}{rr}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array}\end{array}
$$ $$
\begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array}
$$ $$
\begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}
$$ \begin{array}{r}Capacity <br>

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

## Subcatchment 12S: Lot \#5 Roof



## Summary for Reach 18R: DESIGN LINE

Inflow Area $=1.443$ ac, $42.35 \%$ Impervious, Inflow Depth $=0.37$ " for 1 -Year event Inflow $=0.50 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= $\quad 0.045 \mathrm{af}$ Outflow = $0.50 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=0.045 \mathrm{af}$, Atten= $0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
Reach 18R: DESIGN LINE


## Summary for Pond 13P: Infiltration



Plug-Flow detention time $=30.3 \mathrm{~min}$ calculated for 0.009 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=30.3 \mathrm{~min}(790.4-760.1)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.002 af | 6.33 'W x 10.50'L x 3.54'H Field A |
|  |  |  | 0.005 af Overall - 0.001 af Embedded $=0.004$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' | 0.001 af | Cultec R-330XLHD Inside \#1 |
|  |  |  | Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 1$ rows |
|  |  | 0.003 af | Total Available Storage |

Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | $\mathbf{2 4 . 0 "} \times \mathbf{2 4 . 0}$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  | Limited to weir flow at low heads |  |

Discarded OutFlow Max=0.02 cfs @ 11.65 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)
L2=Orifice/Grate ( Controls 0.00 cfs )

## Pond 13P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size= $47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment= +1.50 ' $\times 7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height +6.0 " Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone



## Summary for Pond 14P: Infiltration



Plug-Flow detention time $=30.3$ min calculated for 0.009 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=30.3 \mathrm{~min}(790.4-760.1)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.002 af | 6.33 'W x 10.50'L x 3.54'H Field A |
|  |  |  | 0.005 af Overall - 0.001 af Embedded $=0.004$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' | 0.001 af | Cultec R-330XLHD Inside \#1 |
|  |  |  | Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 1$ rows |
|  |  | 0.003 af | Total Available Storage |

Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | $\mathbf{2 4 . 0 "} \times \mathbf{2 4 . 0}$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  | Limited to weir flow at low heads |  |

Discarded OutFlow Max=0.02 cfs @ 11.65 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)
L2=Orifice/Grate ( Controls 0.00 cfs )

## Pond 14P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $\times 7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone



## Summary for Pond 15P: Infiltration



Plug-Flow detention time $=30.3$ min calculated for 0.009 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=30.3 \mathrm{~min}(790.4-760.1)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.002 af | 6.33 'W x 10.50'L x 3.54'H Field A |
|  |  |  | 0.005 af Overall - 0.001 af Embedded $=0.004$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' | 0.001 af | Cultec R-330XLHD Inside \#1 |
|  |  |  | Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 1$ rows |
|  |  | 0.003 af | Total Available Storage |

Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | $\mathbf{2 4 . 0 "} \times \mathbf{2 4 . 0}$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  | Limited to weir flow at low heads |  |

Discarded OutFlow Max=0.02 cfs @ 11.65 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)
L2=Orifice/Grate ( Controls 0.00 cfs )

## Pond 15P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment= +1.50 ' $\times 7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height +6.0 " Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone



## Summary for Pond 16P: Infiltration



Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.02 cfs @ 11.65 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)
L2=Orifice/Grate ( Controls 0.00 cfs )

## Pond 16P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone



## Summary for Pond 17P: Infiltration



Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.17 cfs @ 11.90 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.17 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)
L2=Orifice/Grate ( Controls 0.00 cfs )

## Pond 17P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 3$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

5 Chambers/Row x 7.00' Long +1.50' Row Adjustment $=36.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 38.50' Base Length

3 Rows x 52.0" Wide + 6.0" Spacing x 2 + 12.0" Side Stone x 2 = 16.00' Base Width
6.0" Stone Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

15 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 3$ Rows $=815.9$ cf Chamber Storage
2,181.7 cf Field -815.9 cf Chambers $=1,365.8$ cf Stone $\times 40.0 \%$ Voids $=546.3$ cf Stone Storage
Chamber Storage + Stone Storage $=1,362.2 \mathrm{cf}=0.031 \mathrm{af}$
Overall Storage Efficiency = 62.4\%
Overall System Size $=38.50^{\prime} \times 16.00^{\prime} \times 3.54^{\prime}$
15 Chambers
80.8 cy Field
50.6 cy Stone



Summary for Subcatchment 2S: Lot \#1 Remainder
Runoff $=0.24$ cfs @ 12.09 hrs, Volume= 0.018 af, Depth= 1.50"
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"


Subcatchment 2S: Lot \#1 Remainder


Summary for Subcatchment 3S: Lot \#2 Remainder
Runoff $=0.24$ cfs @ 12.09 hrs, Volume= 0.018 af, Depth= 1.50"
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"


Subcatchment 3S: Lot \#2 Remainder


Summary for Subcatchment 4S: Lot \#3 Remainder
Runoff $=1.21$ cfs @ 12.08 hrs, Volume= 0.087 af, Depth= 2.10"
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"


Subcatchment 4S: Lot \#3 Remainder


Summary for Subcatchment 5S: Lot \#4 Remainder
Runoff $=0.24$ cfs @ 12.09 hrs, Volume= 0.018 af, Depth= $1.43^{\prime \prime}$
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"


Subcatchment 5S: Lot \#4 Remainder


Summary for Subcatchment 6S: Lot \#5 Remainder
Runoff $=0.25$ cfs @ 12.09 hrs, Volume= 0.019 af, Depth= 1.50"

Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"


Subcatchment 6S: Lot \#5 Remainder


Summary for Subcatchment 8S: Lot \#1 Roof
Runoff $=\quad 0.21$ cfs @ 12.07 hrs, Volume= 0.017 af, Depth= 4.42"
Routed to Pond 13P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"

|  | Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| * | 1,953 | 98 | Roof Area |
| 1,953 |  | $100.00 \%$ Impervious Area |  |

\(\left.$$
\begin{array}{rr}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array}\end{array}
$$ $$
\begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array}
$$ $$
\begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}
$$ \begin{array}{r}Capacity <br>

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

Subcatchment 8S: Lot \#1 Roof


Summary for Subcatchment 9S: Lot \#2 Roof
Runoff $=\quad 0.21$ cfs @ 12.07 hrs, Volume= 0.017 af, Depth= 4.42"

Routed to Pond 14P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"

|  | Area (sf) | CN | Description |
| :--- | ---: | ---: | :--- |
| 1,953 98 Roof Area <br> 1,953  $100.00 \%$ Impervious Area |  |  |  |


| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$ | Length (feet) | Slope <br> (ft/ft) | Velocity (ft/sec) | Capacity (cfs) | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.0 |  |  |  |  | Direct En |

Subcatchment 9S: Lot \#2 Roof


## Summary for Subcatchment 10S: Lot \#3 Roof

Runoff $=0.83$ cfs @ 12.07 hrs, Volume= 0.067 af, Depth= 4.42"

Routed to Pond 17P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"

| Area (sf) |  | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | 7,922 | 98 | Roof Area |  |  |
|  | 7,922 |  | 100.00\% Im | pervious A |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$ | Length (feet) | Slope <br> (ft/ft) | Velocity (ft/sec) | $\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$ | Description |
| 5.0 |  |  |  |  | Direct Entry |

Subcatchment 10S: Lot \#3 Roof


## Summary for Subcatchment 11S: Lot \#4 Roof

Runoff $=\quad 0.21$ cfs @ 12.07 hrs, Volume= 0.017 af, Depth= 4.42"
Routed to Pond 15P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"

| Area (sf) |  | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | 1,953 | 98 | Roof Area |  |  |
|  | 1,953 |  | 100.00\% Im | pervious A |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$ | Length (feet) | Slope (ft/ft) | Velocity $(\mathrm{ft} / \mathrm{sec})$ | $\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$ | Description |

## Subcatchment 11S: Lot \#4 Roof



## Summary for Subcatchment 12S: Lot \#5 Roof

Runoff $=\quad 0.20$ cfs @ 12.07 hrs, Volume= $\quad 0.016$ af, Depth= 4.42"

Routed to Pond 16P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.66"

| Area (sf) |  | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | 1,944 | 98 | Roof Area |  |  |
|  | 1,944 |  | 100.00\% Im | pervious A |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$ | Length (feet) | Slope $(\mathrm{ft} / \mathrm{ft})$ | Velocity (ft/sec) | $\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$ | Description |

## Subcatchment 12S: Lot \#5 Roof



## Summary for Reach 18R: DESIGN LINE



Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
Reach 18R: DESIGN LINE


## Summary for Pond 13P: Infiltration

| Inflow Area = | $0.045 \mathrm{ac}, 100.00 \%$ Impervious, | th $=4.42$ " |
| :---: | :---: | :---: |
| Inflow | 0.21 cfs @ 12.07 hrs, Volume= | 0.017 af |
| Outflow | 0.25 cfs @ 12.15 hrs , Volume= | 0.017 af, Att |
| Discarded | 0.02 cfs @ 11.30 hrs , Volume= | 0.014 af |
| Primary | 0.23 cfs @ 12.15 hrs , Volume= | 0.003 af |
| Routed to | 18R : DESIGN LINE |  |
| Routing by St | method, Time Span= 0.00-36.00 | 0.05 hrs |
| Peak Elev= 5.04' @ 12.15 hrs Surf.Area= 0.002 ac Storage $=0.003 \mathrm{af}$ |  |  |

Plug-Flow detention time $=37.1$ min calculated for 0.017 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=37.0 \mathrm{~min}(785.3-748.3)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.002 af | 6.33 'W x 10.50'L x 3.54'H Field A |
|  |  |  | 0.005 af Overall - 0.001 af Embedded $=0.004$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' | 0.001 af | Cultec R-330XLHD Inside \#1 |
|  |  |  | Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 1$ rows |
|  |  | 0.003 af | Total Available Storage |

Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.02 cfs @ 11.30 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.18 cfs @ 12.15 hrs HW=5.04' (Free Discharge)
—2=Orifice/Grate (Weir Controls 0.18 cfs @ 0.63 fps)

## Pond 13P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment= +1.50 ' $\times 7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 13P: Infiltration
Hydrograph


## Summary for Pond 14P: Infiltration



Plug-Flow detention time= 37.1 min calculated for 0.017 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=37.0 \mathrm{~min}(785.3-748.3)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.002 af | 6.33 'W x 10.50'L x 3.54'H Field A |
|  |  |  | 0.005 af Overall - 0.001 af Embedded $=0.004$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' | 0.001 af | Cultec R-330XLHD Inside \#1 |
|  |  |  | Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0 \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ 'W x 30.5"H x 8.50'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 1$ rows |
|  |  | 0.003 af | Total Available Storage |

Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | $\mathbf{2 4 . 0 "} \times \mathbf{2 4 . 0}$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  | Limited to weir flow at low heads |  |

Discarded OutFlow Max=0.02 cfs @ 11.30 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.18 cfs @ 12.15 hrs HW=5.04' (Free Discharge)
—2=Orifice/Grate (Weir Controls 0.18 cfs @ 0.63 fps)

## Pond 14P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height +6.0 " Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 14P: Infiltration
Hydrograph


## Summary for Pond 15P: Infiltration



Plug-Flow detention time $=37.1$ min calculated for 0.017 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=37.0 \mathrm{~min}(785.3-748.3)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.002 af | 6.33 'W x 10.50'L x 3.54'H Field A |
|  |  |  | 0.005 af Overall - 0.001 af Embedded $=0.004$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' | 0.001 af | Cultec R-330XLHD Inside \#1 |
|  |  |  | Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 1$ rows |
|  |  | 0.003 af | Total Available Storage |

Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.02 cfs @ 11.30 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.18 cfs @ 12.15 hrs HW=5.04' (Free Discharge)
—2=Orifice/Grate (Weir Controls 0.18 cfs @ 0.63 fps)

## Pond 15P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $\times 7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 15P: Infiltration
Hydrograph


## Summary for Pond 16P: Infiltration



Plug-Flow detention time $=37.1 \mathrm{~min}$ calculated for 0.016 af ( $100 \%$ of inflow)
Center-of-Mass det. time= $37.1 \mathrm{~min}(785.4-748.3)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.002 af | 6.33 'W x 10.50'L x 3.54'H Field A |
|  |  |  | 0.005 af Overall - 0.001 af Embedded $=0.004$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' | 0.001 af | Cultec R-330XLHD Inside \#1 |
|  |  |  | Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0 \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ 'W x 30.5"H x 8.50'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 1$ rows |
|  |  | 0.003 af | Total Available Storage |

Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | $\mathbf{2 4 . 0 "} \times \mathbf{2 4 . 0}$ " Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  | Limited to weir flow at low heads |  |

Discarded OutFlow Max=0.02 cfs @ 11.30 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.20 cfs @ 12.15 hrs HW=5.04' (Free Discharge)
_2=OrificelGrate (Weir Controls 0.20 cfs @ 0.64 fps )

## Pond 16P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment= +1.50 ' $\times 7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height +6.0 " Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 16P: Infiltration
Hydrograph


## Summary for Pond 17P: Infiltration

| Inflow Area = | $0.182 \mathrm{ac}, 100.00 \%$ Impervious, | th $=4.42$ " |
| :---: | :---: | :---: |
| Inflow | 0.83 cfs @ 12.07 hrs, Volume= | 0.067 af |
| Outflow | 0.17 cfs @ 11.70 hrs, Volume= | 0.067 af, Att |
| Discarded | 0.17 cfs @ 11.70 hrs , Volume= | 0.067 af |
| Primary | 0.00 cfs @ 0.00 hrs , Volume= | 0.000 af |
| Routed to | 18R : DESIGN LINE |  |
| Routing by St | method, Time Span= 0.00-36.00 | 0.05 hrs |
| Peak Elev= 1.56' @ 12.48 hrs Surf.Area= 0.014 ac Storage= 0.015 af |  |  |

Plug-Flow detention time $=18.7$ min calculated for 0.067 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=18.7 \mathrm{~min}(767.0-748.3)$

| Volume | Invert | Avail.Storage | Storage Description |
| :---: | :---: | :---: | :---: |
| \#1A | 0.00' | 0.013 af 16.00'W x 38.50'L x 3.54'H Field A |  |
|  |  | $0.019 \text { af }$ | 0.050 af Overall - 0.019 af Embedded $=0.031$ af $\times 40.0 \%$ Voids |
| \#2A | 0.50' |  | Cultec R-330XLHD $\times 15$ Inside \#1 |
|  |  |  | Effective Size $=47.8$ "W $\times 30.0$ "H $=>7.45 \mathrm{sf} \times 7.00 \mathrm{~L}=52.2 \mathrm{cf}$ |
|  |  |  | Overall Size $=52.0$ "W $\times 30.5{ }^{\prime \prime} \mathrm{H} \times 8.50$ 'L with 1.50' Overlap |
|  |  |  | Row Length Adjustment $=+1.50 \times 7.45 \mathrm{sf} \times 3$ rows |
| 0.031 af Total Available Storage |  |  |  |
| Storage Group A created with Chamber Wizard |  |  |  |
| Device | Routing | Invert Outlet Devices |  |
| \#1 | Discarded | $0.00 ' 12$ | $000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area |
| \#2 | Primary | $5.00{ }^{\prime}$ | 24.0" $\times 24.0$ " Horiz. Orifice/Grate $\mathrm{C}=0.600$ |
|  |  |  | ited to weir flow at low heads |

Discarded OutFlow Max=0.17 cfs @ 11.70 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.17 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)
$L_{2=O r i f i c e / G r a t e ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$ )

## Pond 17P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $\times 7.45 \mathrm{sf} \times 3$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

5 Chambers/Row x 7.00' Long +1.50' Row Adjustment $=36.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 38.50' Base Length

3 Rows x 52.0" Wide + 6.0" Spacing x 2 + 12.0" Side Stone x 2 = 16.00' Base Width
6.0" Stone Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54^{\prime}$ Field Height

15 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 3$ Rows $=815.9$ cf Chamber Storage
2,181.7 cf Field -815.9 cf Chambers $=1,365.8$ cf Stone $\times 40.0 \%$ Voids $=546.3$ cf Stone Storage
Chamber Storage + Stone Storage $=1,362.2 \mathrm{cf}=0.031 \mathrm{af}$
Overall Storage Efficiency = 62.4\%
Overall System Size $=38.50^{\prime} \times 16.00^{\prime} \times 3.54^{\prime}$
15 Chambers
80.8 cy Field
50.6 cy Stone



Summary for Subcatchment 2S: Lot \#1 Remainder
Runoff $=\quad 0.70$ cfs @ 12.08 hrs, Volume= 0.050 af, Depth= 4.22"
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"


Subcatchment 2S: Lot \#1 Remainder


Summary for Subcatchment 3S: Lot \#2 Remainder
Runoff $=0.71$ cfs @ 12.08 hrs, Volume= $\quad 0.050$ af, Depth= 4.22"
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"


Subcatchment 3S: Lot \#2 Remainder


Summary for Subcatchment 4S: Lot \#3 Remainder
Runoff = 2.98 cfs @ 12.08 hrs, Volume= 0.213 af, Depth= $5.16{ }^{\prime \prime}$
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"


Subcatchment 4S: Lot \#3 Remainder


Summary for Subcatchment 5S: Lot \#4 Remainder
Runoff $=0.73$ cfs @ 12.08 hrs, Volume= 0.052 af, Depth= 4.11"
Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"


Subcatchment 5S: Lot \#4 Remainder


Summary for Subcatchment 6S: Lot \#5 Remainder
Runoff $=0.75$ cfs @ 12.08 hrs, Volume= 0.053 af, Depth= 4.22"

Routed to Reach 18R : DESIGN LINE
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"


Subcatchment 6S: Lot \#5 Remainder


Summary for Subcatchment 8S: Lot \#1 Roof
Runoff $=\quad 0.37$ cfs @ 12.07 hrs, Volume= 0.030 af, Depth= 8.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"

|  | Area (sf) | CN |
| ---: | ---: | :--- | Description $\quad 10$.

\(\left.$$
\begin{array}{rr}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array}\end{array}
$$ $$
\begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array}
$$ $$
\begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}
$$ \begin{array}{r}Capacity <br>

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

Subcatchment 8S: Lot \#1 Roof


Summary for Subcatchment 9S: Lot \#2 Roof
Runoff $=$
Routed to Pond $14 \mathrm{P}:$ Infiltration

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"

|  | Area (sf) | CN | Description |
| :--- | ---: | :--- | :--- |
|  | 98 | Roof Area |  |
|  |  | $100.00 \%$ Impervious Area |  |

\(\left.$$
\begin{array}{rr}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array}\end{array}
$$ $$
\begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array}
$$ $$
\begin{array}{r}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}
$$ \begin{array}{r}Capacity <br>

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

Subcatchment 9S: Lot \#2 Roof


## Summary for Subcatchment 10S: Lot \#3 Roof

Runoff $=$
Routed to Pond 17 P 178 $:$ Infiltration

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"

| Area (sf) |  | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | 7,922 | 98 R | Roof Area |  |  |
|  | 7,922 |  | 00.00\% Im | pervious A |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$ | Length (feet) | Slope (ft/ft) | Velocity <br> (ft/sec) | Capacity <br> (cfs) | Description |

Subcatchment 10S: Lot \#3 Roof


## Summary for Subcatchment 11S: Lot \#4 Roof

Runoff $=\quad 0.37$ cfs @ 12.07 hrs, Volume= 0.030 af, Depth= 8.02"

Routed to Pond 15P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"

| Area (sf) |  | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | 1,953 | 98 R | Roof Area |  |  |
|  | 1,953 |  | 00.00\% Im | pervious A |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$ | Length (feet) | Slope (ft/ft) | Velocity <br> (ft/sec) | Capacity <br> (cfs) | Description |

Subcatchment 11S: Lot \#4 Roof


Summary for Subcatchment 12S: Lot \#5 Roof
Runoff $=\quad 0.36$ cfs @ 12.07 hrs, Volume= 0.030 af, Depth= 8.02"
Routed to Pond 16P : Infiltration
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.26"

| Area (sf) |  | CN | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * | 1,944 | 98 R | Roof Area |  |  |
|  | 1,944 |  | 00.00\% Im | pervious A |  |
| $\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$ | Length (feet) | Slope (ft/ft) | Velocity <br> (ft/sec) | Capacity <br> (cfs) | Description |

Subcatchment 12S: Lot \#5 Roof


## Summary for Reach 18R: DESIGN LINE



Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs
Reach 18R: DESIGN LINE


## Summary for Pond 13P: Infiltration



Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.02 cfs @ 10.15 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.36 cfs @ 12.06 hrs HW=5.06' (Free Discharge)
—2=Orifice/Grate (Weir Controls 0.36 cfs @ 0.78 fps)

## Pond 13P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height +6.0 " Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 13P: Infiltration
Hydrograph


## Summary for Pond 14P: Infiltration



Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.02 cfs @ 10.15 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.36 cfs @ 12.06 hrs HW=5.06' (Free Discharge)
L2=Orifice/Grate (Weir Controls 0.36 cfs @ 0.78 fps )

## Pond 14P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size= $47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 14P: Infiltration
Hydrograph


## Summary for Pond 15P: Infiltration



Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.02 cfs @ 10.15 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.36 cfs @ 12.06 hrs HW=5.06' (Free Discharge)
L2=Orifice/Grate (Weir Controls 0.36 cfs @ 0.78 fps)

## Pond 15P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size= $47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 15P: Infiltration
Hydrograph


## Summary for Pond 16P: Infiltration

| Inflow Area = | $0.045 \mathrm{ac}, 100.00 \%$ Impervious, | th $=8.02$ " |
| :---: | :---: | :---: |
| Inflow | 0.36 cfs @ 12.07 hrs , Volume= | 0.030 af |
| Outflow | 0.42 cfs @ 12.06 hrs, Volume= | 0.030 af , At |
| Discarded | 0.02 cfs @ 10.20 hrs , Volume= | 0.020 af |
| Primary | 0.41 cfs @ 12.06 hrs, Volume= | 0.010 af |
| Routed to | 18R : DESIGN LINE |  |
| Routing by St | method, Time Span= 0.00-36.00 | 0.05 hrs |
| Peak Elev= 5.06' @ 12.06 hrs Surf.Area= 0.002 ac Storage= 0.003 af |  |  |

Plug-Flow detention time $=33.0$ min calculated for 0.030 af ( $100 \%$ of inflow)
Center-of-Mass det. time $=33.0 \mathrm{~min}(772.9-739.9)$


Discarded OutFlow Max=0.02 cfs @ 10.20 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.02 cfs )
Primary OutFlow Max=0.37 cfs @ 12.06 hrs HW=5.06' (Free Discharge)
L2=Orifice/Grate (Weir Controls 0.37 cfs @ 0.79 fps)

## Pond 16P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size= $47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 1$ rows
1 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 8.50' Row Length +12.0" End Stone x $2=10.50$ '
Base Length
1 Rows x 52.0" Wide + 12.0" Side Stone x 2 = 6.33' Base Width
6.0" Stone Base +30.5 " Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

1 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 1$ Rows $=63.3$ cf Chamber Storage
235.5 cf Field -63.3 cf Chambers $=172.2$ cf Stone $\times 40.0 \%$ Voids $=68.9$ cf Stone Storage

Chamber Storage + Stone Storage $=132.2$ cf $=0.003$ af
Overall Storage Efficiency $=56.1 \%$
Overall System Size $=10.50^{\prime} \times 6.33^{\prime} \times 3.54^{\prime}$
1 Chambers
8.7 cy Field
6.4 cy Stone


Pond 16P: Infiltration
Hydrograph


## Summary for Pond 17P: Infiltration



Storage Group A created with Chamber Wizard

| Device | Routing | Invert | Outlet Devices |
| :---: | :--- | :---: | :--- |
| \#1 | Discarded | $0.00^{\prime}$ | $\mathbf{1 2 . 0 0 0}$ in/hr Exfiltration over Surface area |
| \#2 | Primary | $5.00^{\prime}$ | 24.0" $\times 24.0^{\prime \prime}$ Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ |
|  |  |  | Limited to weir flow at low heads |

Discarded OutFlow Max=0.17 cfs @ 11.55 hrs HW=0.05' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.17 cfs)
Primary OutFlow Max=0.34 cfs @ 12.32 hrs HW=5.06' (Free Discharge)
L2=Orifice/Grate (Weir Controls 0.34 cfs @ 0.77 fps )

## Pond 17P: Infiltration - Chamber Wizard Field A

## Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger®330XLHD)

Effective Size= $47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 3$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

5 Chambers/Row x 7.00' Long +1.50' Row Adjustment $=36.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 38.50' Base Length

3 Rows x 52.0" Wide + 6.0" Spacing x 2 + 12.0" Side Stone x 2 = 16.00' Base Width
6.0" Stone Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Stone Cover $=3.54$ ' Field Height

15 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 3$ Rows $=815.9$ cf Chamber Storage
2,181.7 cf Field -815.9 cf Chambers $=1,365.8$ cf Stone $\times 40.0 \%$ Voids $=546.3$ cf Stone Storage
Chamber Storage + Stone Storage $=1,362.2 \mathrm{cf}=0.031 \mathrm{af}$
Overall Storage Efficiency = 62.4\%
Overall System Size $=38.50^{\prime} \times 16.00^{\prime} \times 3.54^{\prime}$
15 Chambers
80.8 cy Field
50.6 cy Stone


Pond 17P: Infiltration
Hydrograph


## Appendix B

Soil Report

United States Department of Agriculture


Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

## Custom Soil Resource Report for Dutchess County, New York



## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

## Contents

Preface ..... 2
Soil Map ..... 5
Soil Map .....  6
Legend .....  7
Map Unit Legend ..... 8
Map Unit Descriptions. ..... 8
Dutchess County, New York. ..... 10
DwC-Dutchess-Cardigan complex, rolling, rocky ..... 10
Hf-Haven-Urban land complex ..... 12
References ..... 14

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

मodəy әכınosəy !!os mołsnว


# Map Unit Legend 

| Map Unit Symbol |  | Map Unit Name | Acres in AOI |
| :--- | :--- | ---: | ---: |
| DwC | Dutchess-Cardigan complex, <br> rolling, rocky | 0.2 | Percent of AOI |
| Hf | Haven-Urban land complex | $8.9 \%$ |  |
| Totals for Area of Interest |  | 1.6 | $\mathbf{1 . 7}$ |

## Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Dutchess County, New York

## DwC—Dutchess-Cardigan complex, rolling, rocky

Map Unit Setting<br>National map unit symbol: 9rfp<br>Elevation: 0 to 1,330 feet<br>Mean annual precipitation: 41 to 47 inches<br>Mean annual air temperature: 45 to 50 degrees F<br>Frost-free period: 115 to 195 days<br>Farmland classification: Farmland of statewide importance<br>\section*{Map Unit Composition}<br>Dutchess and similar soils: 40 percent<br>Cardigan and similar soils: 30 percent<br>Minor components: 30 percent<br>Estimates are based on observations, descriptions, and transects of the mapunit.<br>\section*{Description of Dutchess}<br>\section*{Setting}<br>Landform: Ridges, hills<br>Landform position (two-dimensional): Shoulder<br>Landform position (three-dimensional): Crest<br>Down-slope shape: Convex<br>Across-slope shape: Convex<br>Parent material: Loamy till derived mainly from phyllite, slate, schist, and shale<br>\section*{Typical profile}<br>H1-0 to 8 inches: silt loam<br>H2-8 to 28 inches: silt loam<br>H3-28 to 86 inches: channery silt loam<br>\section*{Properties and qualities}<br>Slope: 5 to 16 percent<br>Depth to restrictive feature: More than 80 inches<br>Drainage class: Well drained<br>Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high<br>( 0.57 to $1.98 \mathrm{in} / \mathrm{hr}$ )<br>Depth to water table: More than 80 inches<br>Frequency of flooding: None<br>Frequency of ponding: None<br>Available water supply, 0 to 60 inches: High (about 9.6 inches)<br>\section*{Interpretive groups}<br>Land capability classification (irrigated): None specified<br>Land capability classification (nonirrigated): 3e<br>Hydrologic Soil Group: B<br>Ecological site: F144AY034CT - Well Drained Till Uplands<br>Hydric soil rating: No<br>\section*{Description of Cardigan}<br>\section*{Setting}<br>Landform: Ridges, hills<br>Landform position (two-dimensional): Shoulder

Landform position (three-dimensional): Crest
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy till or colluvium derived from phyllite, slate, shale, and schist

## Typical profile

H1-0 to 8 inches: channery silt loam
H2 - 8 to 20 inches: channery loam
H3-20 to 30 inches: channery silt loam
H4-30 to 34 inches: unweathered bedrock

## Properties and qualities

Slope: 5 to 16 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low ( 0.00 to $0.06 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: F144AY034CT - Well Drained Till Uplands
Hydric soil rating: No

## Minor Components

## Georgia

Percent of map unit: 10 percent
Hydric soil rating: No
Nassau
Percent of map unit: 9 percent
Hydric soil rating: No

## Massena

Percent of map unit: 9 percent
Hydric soil rating: No

## Rock outcrop

Percent of map unit: 1 percent
Hydric soil rating: Unranked
Sun
Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

## Hf—Haven-Urban land complex

## Map Unit Setting

National map unit symbol: 9rgc
Elevation: 160 to 230 feet
Mean annual precipitation: 41 to 47 inches
Mean annual air temperature: 45 to 50 degrees F
Frost-free period: 115 to 195 days
Farmland classification: Not prime farmland

## Map Unit Composition

Haven and similar soils: 40 percent
Urban land: 35 percent
Minor components: 25 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

## Description of Haven

## Setting

Landform: Outwash plains
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Tread
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits

## Typical profile

H1-0 to 12 inches: loam
H2-12 to 23 inches: gravelly loam
H3-23 to 72 inches: stratified very gravelly sand

## Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high ( 0.57 to $1.98 \mathrm{in} / \mathrm{hr}$ )
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.2 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 1
Hydrologic Soil Group: B
Ecological site: F144AY023CT - Well Drained Outwash
Hydric soil rating: No

## Description of Urban Land

## Typical profile

H1-0 to 6 inches: variable
Interpretive groups
Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: Unranked

## Minor Components

Udorthents
Percent of map unit: 10 percent Hydric soil rating: No
Hoosic
Percent of map unit: 5 percent Hydric soil rating: No

## Knickerbocker

Percent of map unit: 5 percent
Hydric soil rating: No
Fredon
Percent of map unit: 4 percent
Landform: Depressions
Hydric soil rating: Yes
Halsey
Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

## Appendix C

Precipitation Data

## Extreme Precipitation Tables

## Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

|  | Metadata for Point |
| :---: | :--- |
| Smoothing | Yes |
| State | New York |
| Location | New York, United States |
| Latitude | 41.927 degrees North |
| Longitude | 73.908 degrees West |
| Elevation | 60 feet |
| Date/Time | Tue Apr 04 2023 20:53:09 GMT-0400 (Eastern Daylight Time) |

## Extreme Precipitation Estimates

|  | $\mathbf{5 m i n}$ | $\mathbf{1 0 m i n}$ | $\mathbf{1 5 m i n}$ | $\mathbf{3 0 m i n}$ | $\mathbf{6 0 m i n}$ | $\mathbf{1 2 0 m i n}$ |  | $\mathbf{1 h r}$ | $\mathbf{2 h r}$ | $\mathbf{3 h r}$ | $\mathbf{6 h r}$ | $\mathbf{1 2 h r}$ | $\mathbf{2 4 h r}$ | $\mathbf{4 8} \mathbf{h r}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 y r}$ | 0.30 | 0.46 | 0.58 | 0.76 | 0.94 | 1.18 | $\mathbf{1 y r}$ | 0.81 | 1.10 | 1.36 | 1.69 | 2.09 | 2.59 | 2.97 | $\mathbf{1 y r}$ |
| $\mathbf{2 y r}$ | 0.37 | 0.56 | 0.70 | 0.92 | 1.16 | 1.45 | $\mathbf{2 y r}$ | 1.00 | 1.33 | 1.67 | 2.07 | 2.55 | 3.13 | 3.55 | $\mathbf{2 y r}$ |
| $\mathbf{5 y r}$ | 0.43 | 0.67 | 0.84 | 1.13 | 1.44 | 1.83 | $\mathbf{5 y r}$ | 1.25 | 1.65 | 2.11 | 2.61 | 3.21 | 3.93 | 4.51 | $\mathbf{5 y r}$ |
| $\mathbf{1 0 y r}$ | 0.49 | 0.76 | 0.96 | 1.31 | 1.70 | 2.17 | $\mathbf{1 0 y r}$ | 1.47 | 1.94 | 2.51 | 3.11 | 3.82 | 4.66 | 5.40 | $\mathbf{1 0 y r}$ |
| $\mathbf{2 5 y r}$ | 0.57 | 0.90 | 1.15 | 1.60 | 2.12 | 2.73 | $\mathbf{2 5 y r}$ | 1.83 | 2.40 | 3.18 | 3.94 | 4.82 | 5.85 | 6.86 | $\mathbf{2 5 y r}$ |
| $\mathbf{5 0 y r}$ | 0.65 | 1.04 | 1.33 | 1.86 | 2.51 | 3.25 | $\mathbf{5 0 y r}$ | 2.17 | 2.83 | 3.79 | 4.70 | 5.75 | 6.95 | 8.23 | $\mathbf{5 0 y r}$ |
| $\mathbf{1 0 0 y r}$ | 0.74 | 1.19 | 1.54 | 2.18 | 2.98 | 3.88 | $\mathbf{1 0 0 y r}$ | 2.57 | 3.34 | 4.53 | 5.62 | 6.85 | 8.26 | 9.87 | $\mathbf{1 0 0 \mathbf { y r }}$ |
| $\mathbf{2 0 0 y r}$ | 0.85 | 1.38 | 1.79 | 2.56 | 3.53 | 4.62 | $\mathbf{2 0 0 y r}$ | 3.05 | 3.94 | 5.40 | 6.71 | 8.17 | 9.82 | 11.86 | $\mathbf{2 0 0} \mathbf{y r}$ |
| $\mathbf{5 0 0 y r}$ | 1.02 | 1.68 | 2.19 | 3.17 | 4.44 | 5.84 | $\mathbf{5 0 0 y r}$ | 3.83 | 4.90 | 6.83 | 8.49 | 10.32 | 12.36 | 15.12 | $\mathbf{5 0 0 y r}$ |

## Lower Confidence Limits

|  | $\mathbf{5 m i n}$ | $\mathbf{1 0 m i n}$ | $\mathbf{1 5 m i n}$ | $\mathbf{3 0 m i n}$ | $\mathbf{6 0 m i n}$ | $\mathbf{1 2 0 m i n}$ |  | $\mathbf{1 h r}$ | $\mathbf{2 h r}$ | $\mathbf{3 h r}$ | $\mathbf{6 h r}$ | $\mathbf{1 2 h r}$ | $\mathbf{2 4 h r}$ | $\mathbf{4 8} \mathbf{h r}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 y r}$ | 0.27 | 0.41 | 0.50 | 0.67 | 0.83 | 0.95 | $\mathbf{1 y r}$ | 0.71 | 0.93 | 1.16 | 1.40 | 1.75 | 2.25 | 2.64 | $\mathbf{1 y r}$ |
| $\mathbf{2 y r}$ | 0.35 | 0.55 | 0.67 | 0.91 | 1.13 | 1.31 | $\mathbf{2 y r}$ | 0.97 | 1.28 | 1.47 | 1.90 | 2.41 | 3.04 | 3.45 | $\mathbf{2 y r}$ |
| $\mathbf{5 y r}$ | 0.39 | 0.60 | 0.75 | 1.03 | 1.31 | 1.52 | $\mathbf{5 y r}$ | 1.13 | 1.48 | 1.71 | 2.20 | 2.77 | 3.64 | 4.16 | $\mathbf{5 y r}$ |
| $\mathbf{1 0 y r}$ | 0.43 | 0.66 | 0.82 | 1.15 | 1.48 | 1.69 | $\mathbf{1 0 y r}$ | 1.28 | 1.65 | 1.90 | 2.45 | 3.06 | 4.12 | 4.78 | $\mathbf{1 0 y r}$ |
| $\mathbf{2 5 y r}$ | 0.49 | 0.75 | 0.93 | 1.33 | 1.75 | 1.92 | $\mathbf{2 5 y r}$ | 1.51 | 1.88 | 2.16 | 2.76 | 3.46 | 4.94 | 5.75 | $\mathbf{2 5 y r}$ |
| $\mathbf{5 0 y r}$ | 0.54 | 0.83 | 1.03 | 1.48 | 2.00 | 2.11 | $\mathbf{5 0 y r}$ | 1.72 | 2.06 | 2.38 | 3.06 | 3.81 | 5.65 | 6.61 | $\mathbf{5 0 y r}$ |
| $\mathbf{1 0 0 y r}$ | 0.61 | 0.92 | 1.15 | 1.66 | 2.27 | 2.33 | $\mathbf{1 0 0 y r}$ | 1.96 | 2.27 | 2.64 | 3.39 | 4.19 | 6.50 | 7.61 | $\mathbf{1 0 0 \mathbf { y r }}$ |
| $\mathbf{2 0 0 y r}$ | 0.68 | 1.02 | 1.30 | 1.88 | 2.62 | 2.54 | $\mathbf{2 0 0 y r}$ | 2.26 | 2.48 | 2.91 | 3.77 | 4.57 | 7.46 | 8.79 | $\mathbf{2 0 0} \mathbf{y r}$ |
| $\mathbf{5 0 0 y r}$ | 0.80 | 1.19 | 1.54 | 2.23 | 3.18 | 2.88 | $\mathbf{5 0 0 y r}$ | 2.74 | 2.82 | 3.32 | 4.34 | 5.12 | 9.03 | 10.64 | $\mathbf{5 0 0 y r}$ |

## Upper Confidence Limits

|  | 5min | 10min | 15min | 30min | 60min | 120min |  | 1hr | 2hr | 3hr | 6hr | 12hr | 24hr | 48hr |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1yr | 0.33 | 0.52 | 0.63 | 0.85 | 1.04 | 1.25 | 1yr | 0.90 | 1.22 | 1.38 | 1.79 | 2.27 | 2.83 | 3.23 | 1yr |
| 2 yr | 0.38 | 0.59 | 0.73 | 0.99 | 1.22 | 1.45 | 2 yr | 1.05 | 1.42 | 1.63 | 2.10 | 2.65 | 3.26 | 3.71 | 2 yr |
| 5 yr | 0.47 | 0.73 | 0.90 | 1.24 | 1.57 | 1.85 | 5 yr | 1.36 | 1.81 | 2.13 | 2.75 | 3.44 | 4.24 | 4.87 | 5 yr |
| 10yr | 0.56 | 0.86 | 1.06 | 1.48 | 1.91 | 2.27 | 10yr | 1.65 | 2.22 | 2.61 | 3.40 | 4.22 | 5.25 | 6.03 | 10 yr |
| 25yr | 0.70 | 1.06 | 1.32 | 1.88 | 2.48 | 2.97 | 25yr | 2.14 | 2.91 | 3.45 | 4.58 | 5.55 | 6.80 | 8.00 | 25 yr |
| 50 vr | 082 | 176 | 156 | 725 | 302 | 3 K | 50 vr | ) 61 | 357 | 477 | 570 | 687 | 832 | 990 | 50 vr |

## Appendix D

WQv and RRv Calculations

| Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to postdevelopment 1 year runoff volume)? $\qquad$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Point: | Design Line | inch | Manually enter P, Total Area and Impervious Cover. |  |  |  |  |  |
| $\mathrm{P}=$ | 1.30 |  |  |  |  |  |  |  |
| Breakdown of Subcatchments |  |  |  |  |  |  |  |  |
| Catchment <br> Number | Total Area (Acres) | Impervious Area (Acres) | Percent Impervious \% | Rv | $\begin{aligned} & \text { WQv } \\ & \left(f t^{3}\right) \end{aligned}$ | Description |  |  |
| 1 | 0.18 | 0.06 | 33\% | 0.35 | 297 | Dry Well |  |  |
| 2 | 0.19 | 0.06 | 32\% | 0.33 | 300 | Dry Well |  |  |
| 3 | 0.67 | 0.36 | 54\% | 0.53 | 1,687 | Dry Well |  |  |
| 4 | 0.20 | 0.06 | 30\% | 0.32 | 302 | Dry Well |  |  |
| 5 | 0.20 | 0.07 | 35\% | 0.37 | 344 | Dry Well |  |  |
| 6 |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |
| Subtotal (1-30) | 1.44 | 0.61 | 42\% | 0.43 | 2,930 | Subtotal 1 |  |  |
| Total | 1.44 | 0.61 | 42\% | 0.43 | 2,930 | Initial WQv | 0.07 | af |


| Identify Runoff Reduction Techniques By Area |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Technique | Total Contributing Area | Contributing Impervious Area | Notes |  |  |  |  |
|  | (Acre) | (Acre) |  |  |  |  |  |
| Conservation of Natural Areas | 0.00 | 0.00 | minimum 10,000 sf |  |  |  |  |
| Riparian Buffers | 0.00 | 0.00 | maximum contributing length 75 feet to 150 feet |  |  |  |  |
| Filter Strips | 0.00 | 0.00 |  |  |  |  |  |
| Tree Planting | 0.00 | 0.00 | Up to 100 sf directly connected impervious area may be subtracted per tree |  |  |  |  |
| Total | 0.00 | 0.00 |  |  |  |  |  |
| Recalculate WQv after application of Area Reduction Techniques |  |  |  |  |  |  |  |
|  | Total Area <br> (Acres) | Impervious Area (Acres) | Percent Impervious \% | Runoff Coefficient Rv | $\begin{aligned} & \text { WQv } \\ & \left(f t^{3}\right) \end{aligned}$ |  |  |
| "<<Initial WQv" | 1.44 | 0.61 | 42\% | 0.43 | 2,930 |  |  |
| Subtract Area | 0.00 | 0.00 |  |  |  |  |  |
| WQv adjusted after Area Reductions | 1.44 | 0.61 | 42\% | 0.43 | 2,930 |  |  |
| Disconnection of Rooftops |  | 0.00 |  |  |  |  |  |
| Adjusted WQv after Area Reduction and Rooftop Disconnect | 1.44 | 0.61 | 42\% | 0.43 | 2,930 | 0.07 | af |
| WQv reduced by Area Reduction techniques |  |  |  |  | 0 | 0.00 | af |

Total Water Quality Volume Calculation
WQv(acre-feet) $=[(P)(R v)(A)] / 12$

| All Subcatchments |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Catchment | Total Area <br> (Acres) | Impervious Cover (Acres) | Percent Impervious \% | Runoff Coefficient Rv | WQv <br> (ft ${ }^{3}$ ) | Description |
| 1 | 0.18 | 0.06 | 0.33 | 0.35 | 297.30 | Dry Well |
| 2 | 0.19 | 0.06 | 0.32 | 0.33 | 300 | Dry Well |
| 3 | 0.67 | 0.36 | 0.54 | 0.53 | 1687.04 | Dry Well |
| 4 | 0.20 | 0.06 | 0.30 | 0.32 | 302.02 | Dry Well |
| 5 | 0.20 | 0.07 | 0.35 | 0.37 | 344.49 | Dry Well |
| 6 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |
| 26 |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |
| 29 |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |

## Minimum RRv

| Enter the Soils Data for the site |  |  |
| :---: | :---: | :---: |
| Soil Group | Acres | S |
| A |  | 55\% |
| B | 0.00 | 40\% |
| C | 1.44 | 30\% |
| D | 0.00 | 20\% |
| Total Area | 1.44 |  |
| Calculate the Minimum RRv |  |  |
| S = | 0.30 |  |
| Impervious = | 0.61 | acre |
| Precipitation | 1.3 | in |
| Rv | 0.95 |  |
| Minimum RRv | 820 | ft3 |
|  | 0.02 | af |

## Planning

| Practice | Description | Application |
| :---: | :---: | :---: |
| Preservation of Undisturbed Areas | Delineate and place into permanent conservation undisturbed forests, native vegetated areas, riparian corridors, wetlands, and natural terrain. |  <br> Applied |
| Preservation of Buffers | Define, delineate and preserve naturally vegetated buffers along perennial streams, rivers, shorelines and wetlands. | Considered \& Applied |
| Reduction of Clearing and Grading | Limit clearing and grading to the minimum amount needed for roads, driveways, foundations, utilities and stormwater management facilities. | Considered \& Applied |
| Locating Development in Less Sensitive Areas | Avoid sensitive resource areas such as floodplains, steep slopes, erodible soils, wetlands, mature forests and critical habitats by locating development to fit the terrain in areas that will create the least impact. | Considered \& Applied |
| Open Space Design | Use clustering, conservation design or open space design to reduce impervious cover, preserve more open space and protect water resources. | Considered \& Applied |
| Soil Restoration | Restore the original properties and porosity of the soil by deep till and amendment with compost to reduce the generation of runoff and enhance the runoff reduction performance of post construction practices. | N/A |
| Roadway <br> Reduction | Minimize roadway widths and lengths to reduce site impervious area | N/A |
| Sidewalk <br> Reduction | Minimize sidewalk lengths and widths to reduce site impervious area | Considered \& Applied |
| Driveway Reduction | Minimize driveway lengths and widths to reduce site impervious area | Considered \& Applied |
| Cul-de-sac <br> Reduction | Minimize the number of cul-de-sacs and incorporate landscaped areas to reduce their impervious cover. | N/A |
| Building <br> Footprint <br> Reduction | Reduce the impervious footprint of residences and commercial buildings by using alternate or taller buildings while maintaining the same floor to area ratio. | N/A |
| Parking <br> Reduction | Reduce imperviousness on parking lots by eliminating unneeded spaces, providing compact car spaces and efficient parking lanes, minimizing stall dimensions, using porous pavement surfaces in overflow parking areas, and using multi-storied parking decks where appropriate. |  |

## Exhibit B

Dutchess Shepherd LLC
c/a NAVA
Attn: David Ruff, AIA (david@nava.nyc)

## RE: Traffic Impact Study for Residential Development, 6 Mulberry Street, Village of Rhinebeck, Dutchess County, New York; CM Project No. 123-020

Dear Mr. Ruff:

As requested, Creighton Manning Engineering, LLP (CM) has completed a revised Traffic Impact Study for the proposed residential development located on Mulberry Street in the Village of Rhinebeck, Dutchess County, NY. This study, which was revised according to feedback from Tighe \& Bond Engineering and Landscape Architecture in its letter dated June 28, 2023, is based on traffic engineering industry standards and the Subdivision Plan prepared by NAVA Partners LLC, which is included under Attachment A.

### 1.0 Project Description

The subject site is defined on the Dutchess County Tax Map as Section 19, Block 1, Lot 10, and is developed with a three-story building previously occupied by Bulkeley Schoolhouse elementary school in the $20^{\text {th }}$ century. The property continues to be used for community and educational purposes including basketball leagues and private educational uses. The site is accessed via an existing driveway on Mulberry Street approximately 90-feet north of South Street. The proposed project consists of subdividing and redeveloping the property by repurposing the existing building into a multi-family residential building with nine units (on newly created Lot 3) and constructing four detached single-family homes on the remaining four lots (on newly created Lots 1, 2, 4 and 5). The multifamily residential building will be accessed via a driveway on Mulberry Street approximately 180 feet north of South Street and each single-family home will be accessed via a private driveway on either Mulberry Street or South Street. The residential building will be supported 18 parking spaces inclusive of two ADA-accessible spaces. The proposed development is expected to be completed by 2025. A map illustrating the site location is shown in Exhibit 1.


Exhibit 1 - Site Location

### 2.0 Existing Conditions

Roadways Serving the Site

- East Market Street (NYS Route 308) is classified as a Rural Major Collector roadway and is under the jurisdiction of the New York State Department of Transportation (NYSDOT). The roadway runs primarily eastwest from NYS Route 199 in the Town of Red Hook to US Route 9 in the Town of Rhinebeck. In the vicinity of the site, East Market Street provides one 12 -foot-wide travel lane in each direction with on-street parking on both sides of the road. Turn lanes are generally not provided at intersections or driveways. The posted speed limit is 30 miles per hour.
- Mulberry Street is classified as a Rural Local roadway and is under the jurisdiction of the Village of Rhinebeck. The roadway runs north-south from US Route 9 to South Street within the Village. In the vicinity of the site, Mulberry Street provides a 33 -feet-wide cross-section for two-way travel and on-street parking on both sides of the road. Turn lanes are not provided at intersections or driveways. The posted speed limit 30 miles per house. Sidewalks are provided on both sides of the roadway.
- South Street is classified as a Rural Local roadway and is under the jurisdiction of the Village of Rhinebeck. The roadway runs east-west from East-Market Street to Mill Street within the Village. In the vicinity of the site, South Street provides a 35 -feet-wide cross-section for a two-way travel and on-street parking on both side of the road. Turn lanes are not provided at intersections or driveways. The posted speed-limit 30 miles per house. Sidewalks are provided on both sides of the roadway.
- North/South Parsonage Street: is classified as a Rural Local roadway and is under the jurisdiction of the Village of Rhinebeck. The roadway runs north-south-west from 4H Hill Lane to Mill Street within the Village. In the vicinity of the site, North/South Parsonage Street provides a 30 -foot-wide cross-section for one-way and twoway travel on different segments of the road. Turn lanes are not provided at intersections or driveways. The posted speed limit 30 miles per house. Sidewalks are provided on both sides of the roadway.


## Study Intersections

- East Market Street/Mulberry Street: This is a four-leg unsignalized intersection operating with stop control on the northbound and southbound approaches. The eastbound, westbound, northbound, and southbound intersection approaches each provide one shared left-turn/through/right-turn lane. Marked crosswalks are provided on the east and south legs of the intersection. Curb ramps are present on all corners of the intersection. Exhibit 2 depicts the intersection.


Exhibit 2 - East Market St and Mulberry St Intersection

- East Market Street/North Parsonage Street: This is a four-leg unsignalized intersection operating with stop control on the southbound approach. The eastbound East Market Street approach provides one shared left-turn/through/right-turn lane. The westbound East Market Street approach provides one shared left-turn/through/right-turn lane. There is no northbound approach since North Parsonage Street is one-way southbound. The southbound North Parsonage Street approach provides one shared left-turn/through/rightturn lane. Curb ramps are present on all corners. Exhibit 3 depicts the intersection.


Exhibit 3 - East Market St and North Parsonage St Intersection


Exhibit 4 - South St and Mulberry St Intersection


Exhibit 5 - South St/N. Parsonage St/S. Parsonage St Intersection

September 5, 2023
Page 4 of 11

## Motor Vehicle Collision Analysis

Motor vehicle collision data for the aforementioned study intersections was obtained from the NYSDOT from December 31, 2019 to December 31, 2022 period. Tables 1-3 summarize the collision type and severity of the reported vehicle collision at each intersection. It should be noted that there no collisions reported at the South Street/Mulberry Street intersection.

Table 1 - Summary of Motor Vehicle Collisions

| Location | Collision Type | Number of Collisions | Number of Collisions Resulting in Injury | Number of Collisions Resulting in Fatalities |
| :---: | :---: | :---: | :---: | :---: |
| East Market St \& Mulberry St Intersection | Rear End | 0 | 0 | 0 |
|  | Overtaking | 0 | 0 | 0 |
|  | Head-on | 0 | 0 | 0 |
|  | Left-Turn | 0 | 0 | 0 |
|  | Right Angle | 1 | 0 | 0 |
|  | Right Turn | 0 | 0 | 0 |
|  | Collision with Fixed Object | 0 | 0 | 0 |
|  | Collision with Animal | 0 | 0 | 0 |
|  | Other | 0 | 0 | 0 |
| Total |  | 1 | 0 | 0 |

Table 2 - Summary of Motor Vehicle Collisions

| Location | Collision Type | Number of Collisions | Number of Collisions Resulting in Injury | Number of Collisions Resulting in Fatalities |
| :---: | :---: | :---: | :---: | :---: |
| East Market St \& N. Parsonage St Intersection | Rear End | 0 | 0 | 0 |
|  | Overtaking | 0 | 0 | 0 |
|  | Head-on | 0 | 0 | 0 |
|  | Left-Turn | 1 | 0 | 0 |
|  | Right Angle | 2 | 1 | 0 |
|  | Right Turn | 0 | 0 | 0 |
|  | Collision with Fixed Object | 0 | 0 | 0 |
|  | Collision with Animal | 0 | 0 | 0 |
|  | Other | 0 | 0 | 0 |
| Total |  | 3 | 1 | 0 |

Table 3 - Summary of Motor Vehicle Collisions

| Location | Collision Type | Number of Collisions | Number of Collisions Resulting in Injury | Number of Collisions Resulting in Fatalities |
| :---: | :---: | :---: | :---: | :---: |
| South St \& N. <br> Parsonage St/S. <br> Parsonage St <br> Intersection | Rear End | 0 | 0 | 0 |
|  | Overtaking | 0 | 0 | 0 |
|  | Head-on | 0 | 0 | 0 |
|  | Left-Turn | 0 | 0 | 0 |
|  | Right Angle | 4 | 1 | 0 |
|  | Right Turn | 0 | 0 | 0 |
|  | Collision with Fixed Object | 0 | 0 | 0 |
|  | Collision with Animal | 0 | 0 | 0 |
|  | Other | 0 | 0 | 0 |
| Total |  | 4 | 1 | 0 |

- East Market Street/Mulberry Street: Table 1 shows that one collision was reported at the intersection over the three-year period. This collision was a right-angle collision, and the apparent contributing factor was failure to yield right of way. This crash did not result in an injury or fatality. There no collisions involving a pedestrian or bicyclist.
- East Market Street/N. Parsonage Street: Table 2 shows that three collisions were reported at the intersection over the three-year period. Out of those three collisions, one resulted in an injury. The data received reports that the collisions occurred due to failure to yield right of way and driver inattention. There were zero collisions resulting in fatality. There no collisions involving a pedestrian or bicyclist.
- South Street/N. Parsonage Street/S. Parsonage Street: Table 3 shows that four collisions were reported at the intersection over the three-year period. Out of those four collisions, one resulted in an injury. The data received reports that the collisions occurred due to failure to yield right of way with all collisions being rightangle collisions. There were zero collisions resulting in fatality. There no collisions involving a pedestrian or bicyclist.


## Data Collection

Turning Movement Counts (TMCs) were conducted on Wednesday, March 1, 2023, during the weekday morning (7:00AM - 9:00AM), weekday school dismissal (2:00PM - 4:00PM), weekday evening (4:00PM - 6:00PM) and on Saturday February 25,2023 during the midday (11:00AM $-2: 00 \mathrm{PM}) .{ }^{1}$ These periods coincide with the anticipated peak-hour operation times of the proposed use as well as the adjacent street traffic. The observed peak hours were 7:30AM to 8:30AM, 2:30PM to 3:30PM, and 4:15PM to 5:15PM on the weekday, and 1:00PM to 2:00PM on the Saturday. Counts were performed at the following intersections:

- East Market St/Mulberry St
- East Market St/North Parsonage St
- South St/Mulberry St
- South St/North Parsonage St/South Parsonage St

Given their proximity to Rhinebeck school District, East Market Street/North Parsonage Street and South Street/North Parsonage Street/South Parsonage Street intersections were only counted during the weekday morning and weekday dismissal peak hour. These intersections will experience high volumes of passenger vehicles, school buses, and pedestrians during the peak hours.

It is important to note that the Novel Coronavirus/COVID-19 pandemic was anticipated to have an effect on the turning movement counts. CM cited historical traffic data published by the NYSDOT on the Traffic Data Viewer to compare the observed counts on East Market Street and North Parsonage Street intersection. The comparison showed that the observed AM and school dismissal volumes were higher than the historical data. For the weekday evening period, the comparison showed that the volumes were lower than historical data. A calibration factor was calculated and applied to the weekday evening and Saturday volumes to develop "pre-pandemic" traffic volumes. ${ }^{2}$ Figure 1-1 shows the 2023 Existing traffic volumes for the study area. The raw TMC data is included under Attachment B.

[^0]
### 3.0 Traffic Assessment

## Trip Generation

Trip generation determines the quantity of traffic expected to travel to/from a given site. The Institute of Transportation Engineers' (ITE) Trip Generation Manual, 11 ${ }^{\text {th }}$ Edition, is the industry-standard resource used for estimating trip generation for proposed land uses based on data collected at similar uses. Upon review of the Trip Generation Manual, Land Use Code (LUC) 210 "Single-Family Detached Housing" and LUC 220 "Multifamily Housing (Low-Rise)" most accurately describe the proposed uses. Table 4 summarizes the trip generation for the weekday AM, weekday school dismissal, weekday PM, and Saturday Midday peak hours.

Table 4 - Trip Generation Summary for Proposed Use

| Land Use | Independent Variable | Weekday AM Peak Hour |  |  | Weekday School Dismissal Peak Hour |  |  | Weekday PM Peak Hour |  |  | Saturday Midday Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Enter | Exit | Total |
| Multifamily Housing (Low-Rise) - LUC 220 | 9 Units | 1 | 3 | 4 | 3 | 2 | 5 | 3 | 2 | 5 | 2 | 2 | 4 |
| Single Family Detached House - LUC 210¹ | 4 Unit | 0 | 4 | 4 | 4 | 0 | 4 | 4 | 0 | 4 | 0 | 4 | 4 |
| Total Trips Generated |  | 1 | 7 | 8 | 7 | 2 | 9 | 7 | 2 | 9 | 2 | 6 | 8 |

${ }^{1} \mathrm{~A}$ total of four units for this development as is reflected in the total trips generated row.
Table 4 shows that the project is expected to generate eight total trips during weekday AM peak hour, nine total trips during the weekday school dismissal peak hour, nine total trips during the weekday PM peak hour, and eight trips during the Saturday midday peak hour. It is important to note that there is no "pass-by" component of the traffic associated with the proposed development. Additionally, the magnitude of the new traffic associated with this development is less than the NYSDOT and ITE threshold of 100-site generated trips on any one intersection, which is an industry threshold indicating whether a proposed development will have a significant impact on offsite intersections. While the anticipated trip generation falls below that threshold, the study herein analyzes four off-site intersections.

In response to Tighe and Bond's request for more information about the existing/historic use, CM has noted that the subject site is developed with a three-story building previously occupied by Bulkeley Schoolhouse elementary school in the $20^{\text {th }}$ century. The property continues to be used periodically for community and educational purposes including basketball leagues and private educational uses. In order to provide some background on the trip making characteristics of the historical school use, CM had developed a trip generation estimate based on the available information. CM was unable to determine the size of the student body when it was fully operational; therefore, CM applied the trip generation of the proposed use during the weekday PM peak hour to calculate the number of students that would result in an equivalent number of vehicle trips. Based on the ITE data for the LUC 520 "Elementary School," the school would have generated nine total trips during the weekday PM peak hour with 55 students enrolled. Table 5 summarizes the trip generation of the school during the other three peak hours assuming an enrollment of 55 students.

Table 5 - Trip Generation Summary for Previous Use

| Land Use | Independent Variable | Weekday AM Peak Hour |  |  | Weekday School Dismissal Peak Hour |  |  | Weekday PM Peak Hour |  |  | Saturday Midday Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Enter | Exit | Total |
| Elementary School - LUC 520 | 55 Students | 22 | 19 | 41 | 14 | 11 | 25 | 4 | 5 | 9 | -- | -- | -- |

Table 5 shows that the previous use would need to have 55 students to generate nine trips in the PM peak hour of the proposed development. Furthermore, the school would have generated 33 more trips during the weekday AM peak hour and 16 more trips during the weekday school dismissal peak hour. School traffic is generally more concentrated with the majority of trips occurring within a fraction of the peak hour whereas residential traffic is typically distributed over the course of the peak hour.

## Future Traffic Volumes

To evaluate the impact of the proposed project, traffic projections were prepared for the anticipated year of completion - 2025. Historic traffic volume data along East Market Street indicates that traffic volumes along the roadway have decreased by $1.72 \%$ annually. ${ }^{3}$ In order to conservatively forecast the 2025 traffic volume, a $+0.5 \%$ growth rate was applied to the existing traffic volumes and compounded annually for two years. CM contacted the Village of Rhinebeck Planning Board Clerk, who identified developments in the area that when constructed could potentially increase traffic within the study area. Table 6 summarizes the other planned development projects that are considered in this analysis.

Table 6 - Other Planned Development Projects

| Project | Type | Location | Source of Trip Generation | Trips Generated in Study Area by Projects |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Weekday AM Peak Hour | Weekday School Dismissal Peak Hour | Weekday PM Peak Hour | Saturday <br> Midday <br> Peak Hour |
| Locus Hill Development | Residential | Rhinecliff Road | CLP | 10 | 16 | 11 | 12 |
| Grasmere House Country Inn 2 | Hotel | US Route 9 | GPI | 16 | 20 | 20 | 23 |

These volumes were then added to the grown 2025 traffic volumes to represent 2025 No-Build conditions. These 2025 No-Build conditions are shown on Figures 1-2 and represent the expected traffic volumes in 2025 without the proposed development.

Traffic generated by the project was distributed on the adjacent roadway network based on existing observed travel patterns in the project area. The proximity of the site to the Taconic State Parkway to the east and New York State Thruway to the west is expected to influence trip-making behavior. The distribution of the multifamily residential and detached family homes is shown on Figures 2 A and 2 B , respectively. The associated site-generated traffic volumes are shown on Figures 3 A for the multifamily residential and Figure 3B for the single-family homes. The site-generated trips were then added to the 2025 No-Build traffic volumes, resulting in the 2025 Build traffic volumes shown on Figure 4.

## Traffic Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made using Synchro Version 11 software, which automates the procedures contained in the Highway Capacity Manual. Table 7A and Table 7B summarize the results of the level of service calculations for the Existing, No-Build, and Build conditions during the weekday AM peak hour, weekday school dismissal peak hour, weekday PM peak hour, and Saturday Midday peak hour. The detailed level of service analyses are included under Attachment C.

[^1]September 5, 2023
Page 8 of 11
Table 7A - Level of Service Summary


U = Unsignalized intersection
$\mathrm{S}=$ Signalized intersection
EB, WB, NB, SB = Eastbound, Westbound, Northbound, and Southbound intersection approaches
L, T, R = Left-turn, Through, and/or Right-turn movements
$X(Y . Y)=$ Level of service (Average delay in seconds per vehicle)

Table 7B - Level of Service Summary

| Intersection |  | $\overline{0}$든0 | Weekday PM Peak Hour |  |  | Saturday Midday Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 2023 \\ \text { Existing } \end{gathered}$ | $\begin{gathered} 2025 \\ \text { No-Build } \end{gathered}$ | $\begin{aligned} & 2025 \\ & \text { Build } \end{aligned}$ | $\begin{gathered} 2023 \\ \text { Existing } \end{gathered}$ | $\begin{gathered} 2025 \\ \text { No-Build } \end{gathered}$ | $\begin{aligned} & 2025 \\ & \text { Build } \end{aligned}$ |
| East Market St/Mulberry St |  |  | U |  |  |  |  |  |  |
| E. Market St, EB | LTR | A (7.7) |  | A (7.7) | A (7.7) | A (7.6) | A (7.6) | A (7.6) |
| E. Market St, WB | LTR | A (7.5) |  | A (7.7) |
| Mulberry St, NB | LTR | B (12.6) |  | B (13.0) | B (13.2) | B (12.2) | B (12.4) | B (12.4) |
| Mulberry, SB | LTR | B (12.3) |  | B (12.4) | B (12.5) | B (11.3) | B (11.5) | B (11.5) |
| Mulberry St/South Street |  | U |  |  |  |  |  |  |
| South St, EB | LT |  | A (7.6) | A (7.4) |
| Mulberry St, SB | LR |  | A (9.1) | A (9.6) | A (9.3) | A (9.1) | A (9.3) | A (9.3) |
| Mulberry St/Lot 1 |  | U |  |  |  |  |  |  |
| Lot 1, EB | LR |  | -- | -- | A (0) | -- | -- | A (8.8) |
| Mulberry St, NB | LT |  | -- | -- | A (0) | -- | -- | A (0) |
| Mulberry St/Lot 2 |  | U |  |  |  |  |  |  |
| Lot 2, EB | LR |  | -- | -- | A (0) | -- | -- | A (8.8) |
| Mulberry St, NB | LT |  | -- | -- | A (0) | -- | -- | A (0) |
| Mulberry St/Lot 3 |  | U |  |  |  |  |  |  |
| Lot 3, EB | LR |  | -- | -- | A (8.7) | -- | -- | A (8.8) |
| Mulberry St, NB | LT |  | -- | -- | A (7.3) | -- | -- | A (7.3) |
| South St/Lot 4 |  | U |  |  |  |  |  |  |
| South St, EB | LT |  | -- | -- | A (7.3) | -- | -- | A (8.5) |
| Lot 4, SB | LR |  | -- | -- | A (0) | -- | -- | A (0) |
| South St/Lot 5 |  | U |  |  |  |  |  |  |
| South St, EB | LT |  | -- | -- | A (7.3) | -- | -- | A (8.5) |
| Lot 5, SB | LR |  | -- | -- | A (0) | -- | -- | A (0) |
| U = Unsignalized intersection <br> $S=$ Signalized intersection <br> EB, WB, NB, SB = Eastbound, Westbound, Northbound, and <br> L, T, R = Left-turn, Through, and/or Right-turn movements <br> $X(Y . Y)=$ Level of service (Average delay in seconds per veh |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  | , and Southbound intersection approaches ents |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

The impact of the project can be described by comparing the analysis of the No-Build and Build operating conditions. The following observation are evident from the analysis:

- East Market Street/Mulberry Street: The level of service analysis indicates that the eastbound South Main Street approach currently operates at an acceptable LOS B or better during the study peak hours and will continue to do so in the Build conditions.
- East Market Street/North Parsonage Street: The level of service analysis indicates that the eastbound South Main Street approach currently operates at an acceptable LOS B or better during the study peak hours and will continue to do so in the Build conditions.
- Mulberry Street/South Street: The level of service analysis indicates that the eastbound South Main Street approach currently operates at an acceptable LOS B or better during the study peak hours and will continue to do so in the Build conditions.
- South Street/South Parsonage Street: The level of service analysis indicates that the eastbound South Main Street approach currently operates at an acceptable LOS C or better during the study peak hours and will continue to do so in the Build conditions.
- Site Driveways (Lot 1 - Lot 5): The level of service analysis indicates that as a two-way stop-controlled intersection with stop-control the driveway approaches will operate at a LOS A during all peak hours.


### 4.0 Sight Distance

The available intersection sight distance from the site driveway intersections were measured from the perspective of a driver who would be exiting the site and looking in both directions along Mulberry Street to determine if adequate sight lines are available. The intersection sight distance was also measured for drivers traveling north on Mulberry Street seeking to turn left into the proposed site driveway. The available intersection sight distance on a side street or driveway


Exhibit 6 - Sight Distance Measurements should provide drivers a sufficient view of the intersecting highway to allow vehicles to enter or exit the intersection without excessively slowing vehicles traveling at or near the operating speed on the intersecting mainline. Stopping sight distance was also measured at the proposed site driveways. Stopping sight distance is the length of the roadway ahead that is visible to the driver on the mainline. The available stopping sight distance on a roadway should be of sufficient length to enable a vehicle traveling at or near the operating speed to stop before reaching a stationary object in its path. Exhibit 6 depicts the sight distance measurements.

The posted speed limit on Mulberry Street along the subject site's frontage is 30 miles per hour. Therefore, the sight distances measured in the field were compared to the guidelines presented in the AASHTO A Policy on Geometric Design of Highway and Streets "Green Book", 2018, and NYSDOT design guidance (EB 17-007) for 35 miles per hour (Posted speed +5 MPH ). The results of the analysis are summarized in Table 8.

Table 8 - Sight Distance Summary

| Intersection |  | Intersection Sight Distance ${ }^{1}$ |  |  |  | Stopping Sight Distance ${ }^{2}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Right Turn from Site Driveway ( $D_{L}$ ) | Left Turn from Site Driveway |  | Left Turn from Mulberry Street. (Ds) | SSD ${ }_{\text {NB }}$ | SSD ${ }_{\text {SB }}$ |
|  |  | Looking <br> Left ( $D_{L}$ ) | Looking Right ( $\mathrm{D}_{\mathrm{R}}$ ) |  |  |  |
| Mulberry Street/Site | Available |  | 218 ft | 218 ft | 202 ft | 202 ft | 177 ft | 218 ft |
| Driveway | Recommended | 335 ft | 390 ft | 390 ft | 285 ft | 250 ft | 250 ft |

${ }^{1}$ Intersection sight distance is measured 14.5 feet back from the traveled way at an object height of 3.5 feet and an eye height of 3.5 feet for a vehicle.
${ }^{2}$ Stopping sight distance is measured from an eye height of 3.5 feet for a passenger car to an object height of 2 feet located in the path of northbound and southbound vehicles.

The sight distance evaluation for the site driveway serving the parking lot of the multi-family residential building indicates that the available intersection and stopping sight distances do not meet the AASHTO recommended guidelines for an assumed operating speed of 35 miles per hour. It should be noted that the evaluation is based on a conservative operating speed of 35 miles per hour. A more realistic speed is the actual posted speed limit of 30 miles per hour given that each intersection operates under stop-control, which requires vehicles to fully stop before proceeding north or south along Mulberry Street. The AASHTO recommended stopping sight distance for 30 miles per hour is $175-\mathrm{ft}$, which would be exceeded based on the location of the proposed driveway. Additionally, assuming that the typical right turn is performed at 10 miles per hour or less, an intersection sight distance of 100 feet should be provided based on "Case B2, Right Turn From Stop" and Equation 9-1 from AASHTO's A Policy on Geometric Design of Highways and Streets, 2018. Assuming that the typical left turn is performed at 15 miles per hour or less, an intersection sight distance of 145 feet should be provided based on the same methodology. Lastly, the driveway location exceeds the NYSDOT guidance in its Policy and Standard for Design of Entrances to State Highways for driveway offset from adjacent intersections.

### 5.0 Site Access, Circulation, and Parking

CM reviewed the site access, site circulation, and parking as shown on the Proposed Subdivision Plan prepared by NAVA Partners LLC. Lots 1,2 and 3 will be accessed via driveways on Mulberry Street, Lots 4 and 5 will be accessed via driveways on South Street. Each individual lot will have their own driveway. The multi-family building on Lot 3 will be supported by 18 parking spaces inclusive of two ADA-accessible spaces. The proposed number of parking spaces meets the Village of Rhinebeck zoning requirements. ${ }^{4}$

### 6.0 Conclusion

The subject site is defined on the Dutchess County Tax Map as Section 19, Block 1, Lot 10. The proposed project consists of redeveloping the existing building into a multi-family residential building and four single-family residential homes on adjacent lots. Two of the single-family homes and the multi-family residential building will be accessed via individual driveways on Mulberry Street and the two other single-family homes will be accessed via individual driveways on South Street. The following is noted regarding the proposed project:

- Turning movement counts were collected during a typical weekday and typical Saturday at the study intersections.
- Upon review of the Trip Generation Manual, Land Use Code (LUC) 210 "Single Family Detached Home" and LUC 220 "Multifamily Housing (Low-Rise)" most closely described the anticipated uses on site.
- The development is expected to generate a total of eight trips during the AM peak hour, a total of nine trips during the school dismissal peak hour, a total of nine trips during the PM peak hour, and a total of eight trips during the Saturday midday peak hour.
- Two other developments were identified by the Village of Rhinebeck and the traffic generated was included in this analysis.
- The level of service analysis indicates that the Build condition of the study intersections will operate at the levels of service consistent with the No-Build conditions.
- The project is not expected to have a significant adverse impact on surrounding roadway network.

Please do not hesitate to call our office if you have any questions or comments, or require additional information.
Respectfully submitted,
Creighton Manning Engineering, LLP


Frank A. Filiciotto, PE
Associate


Fior M. Perez, EIT
Assistant Project Engineer
cc:

[^2]
(1)


ENTER (EXIT)

| TRIP DISTRIBUTION | Creighton Manning |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DUTCHESS SHEPHARD LLC <br> VILLAGE OF RHINEBECK |  |  |  |  |  |  |
| DUTCHESS COUNTY, NEW YORK | PROJECT: | 123-020 | DATE: | 04/2023 | FIGURE: | 2A |



ENTER (EXIT)

| TRIP DISTRIBUTION | Creighton Manning |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DUTCHESS SHEPHARD LLC |  |  |  |  |  |  |
| DUTCHESS COUNTY, NEW YORK | PROJECT: | 123-020 | DATE: | 04/2023 | FIGURE: | 2 B |

(1)


AM (MIDDAY) [PM] \{SAT\}



| 2025 BUILD TRAFFIC VOLUMES | Creighton Manning |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DUTCHESS SHEPHARD LLC VILLAGE OF RHINEBECK DUTCHESS COUNTY, NEW YORK |  |  |  |  |  |  |
|  | PROJECT: | 123-020 | DATE: | 04/2023 | FIGURE: | 4 |

# ATTACHMENT A <br> SUBDIVISION PLAN 

6 Mulberry Street<br>Village of Rhinebeck<br>Dutchess County, New York

buLkeley schoolhouse overlay district


| OWNER |  | MUNIIIPALITY | ${ }^{\text {REVIIEWING AGENCY }}$ |  | ARCHITECT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DUTCHESS SHEPHERD LLC <br> 333 Cedar Heights Road <br> Rhinebeck, NY 12572 | Signature: <br> Print Name: | VILLAGE OF RHINEBECK Dutchess County, New York | PLANNING \& ZONING <br> Rhinebeck, Dutchess County, New York | Signature: <br> Print Name: |  | 0 |

# ATTACHMENT B TURNING MOVEMENT COUNTS 

6 Mulberry Street<br>Village of Rhinebeck<br>Dutchess County, New York

Wed Mar 1, 2023
Full Length (7 AM-9 AM)
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042879, Location: 41.926015, -73.907341

Provided by: Creighton Manning Engineering, LLP 2 Winners Circle, Albany, NY, 12205, US

| Leg <br> Direction | South St Eastbound |  |  |  |  | South St Westbound |  |  |  |  | Mulberry St Southbound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | U | App | Ped* | T | R | U | App | Ped* | L | R | U | App | Ped* | Int |
| 2023-03-01 7:00AM | 0 | 2 | 0 | 2 | 0 | 3 | 2 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 7:15AM | 1 | 1 | 0 | 2 | 0 | 2 | 2 | 0 | 4 | 0 | 3 | 0 | 0 | 3 | 1 | 9 |
| 7:30AM | 0 | 8 | 0 | 8 | 0 | 17 | 12 | 0 | 29 | 0 | 1 | 0 | 0 | 1 | 0 | 38 |
| 7:45AM | 3 | 4 | 0 | 7 | 0 | 14 | 38 | 0 | 52 | 0 | 4 | 1 | 0 | 5 | 0 | 64 |
| Hourly Total | 4 | 15 | 0 | 19 | 0 | 36 | 54 | 0 | 90 | 0 | 8 | 1 | 0 | 9 | 1 | 118 |
| 8:00AM | 2 | 5 | 0 | 7 | 0 | 12 | 10 | 0 | 22 | 1 | 1 | 0 | 0 | 1 | 1 | 30 |
| 8:15AM | 0 | 5 | 0 | 5 | 0 | 6 | 5 | 0 | 11 | 0 | 1 | 0 | 0 | 1 | 0 | 17 |
| 8:30AM | 0 | 11 | 0 | 11 | 0 | 5 | 9 | 0 | 14 | 0 | 2 | 1 | 0 | 3 | 0 | 28 |
| 8:45AM | 1 | 4 | 0 | 5 | 0 | 13 | 26 | 0 | 39 | 0 | 2 | 0 | 0 | 2 | 2 | 46 |
| Hourly Total | 3 | 25 | 0 | 28 | 0 | 36 | 50 | 0 | 86 | 1 | 6 | 1 | 0 | 7 | 3 | 121 |
| Total | 7 | 40 | 0 | 47 | 0 | 72 | 104 | 0 | 176 | 1 | 14 | 2 | 0 | 16 | 4 | 239 |
| \% Approach | 14.9\% | 85.1\% | 0\% | - | - | 40.9\% | 59.1\% | 0\% | - | - | 87.5\% | 12.5\% | 0\% | - | - | - |
| \% Total | 2.9\% | 16.7\% | 0\% | 19.7\% | - | 30.1\% | 43.5\% | 0\% | 73.6\% | - | 5.9\% | 0.8\% | 0\% | 6.7\% | - | - |
| Lights | 7 | 38 | 0 | 45 | - | 70 | 99 | 0 | 169 | - | 14 | 2 | 0 | 16 | - | 230 |
| \% Lights | 100\% | 95.0\% | 0\% | 95.7\% | - | 97.2\% | 95.2\% | 0\% | 96.0\% | - | 100\% | 100\% | 0\% | 100\% | - | 96.2\% |
| Articulated Trucks and Single-Unit Trucks | 0 | 1 | 0 | 1 | - | 0 | 1 | 0 | 1 | - | 0 | 0 | 0 | 0 | - | 2 |
| \% Articulated Trucks and Single-Unit Trucks | 0\% | 2.5\% | 0\% | 2.1\% | - | 0\% | 1.0\% | 0\% | 0.6\% | - | 0\% | 0\% | 0\% | 0\% | - | 0.8\% |
| Buses | 0 | 1 | 0 | 1 | - | 2 | 4 | 0 | 6 | - | 0 | 0 | 0 | 0 | - | 7 |
| \% Buses | 0\% | 2.5\% | 0\% | 2.1\% | - | 2.8\% | 3.8\% | 0\% | 3.4\% | - | 0\% | 0\% | 0\% | 0\% | - | 2.9\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 |
| \% Bicycles on Road | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% |
| Pedestrians | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 4 |  |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | 0\% | - | - | - | - | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | 0 | - | - | - | - | 1 | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | - | - | - | - | - | 100\% | - | - | - | - | 0\% | - |

[^3]All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042879, Location: 41.926015, -73.907341
[N] Mulberry St
Total: 127
In: 16 Out: 111


South Street-Mulberry Street Weekday AM - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042879, Location: 41.926015, -73.907341

Provided by: Creighton Manning Engineering, LLP 2 Winners Circle, Albany, NY, 12205, US

| Leg <br> Direction | South St Eastbound |  |  |  |  | South St Westbound |  |  |  |  | Mulberry St Southbound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | U | App | Ped* | T | R | U | App | Ped* | L | R | U | App | Ped* | Int |
| 2023-03-01 7:30AM | 0 | 8 | 0 | 8 | 0 | 17 | 12 | 0 | 29 | 0 | 1 | 0 | 0 | 1 | 0 | 38 |
| 7:45AM | 3 | 4 | 0 | 7 | 0 | 14 | 38 | 0 | 52 | 0 | 4 | 1 | 0 | 5 | 0 | 64 |
| 8:00AM | 2 | 5 | 0 | 7 | 0 | 12 | 10 | 0 | 22 | 1 | 1 | 0 | 0 | 1 | 1 | 30 |
| 8:15AM | 0 | 5 | 0 | 5 | 0 | 6 | 5 | 0 | 11 | 0 | 1 | 0 | 0 | 1 | 0 | 17 |
| Total | 5 | 22 | 0 | 27 | 0 | 49 | 65 | 0 | 114 | 1 | 7 | 1 | 0 | 8 | 1 | 149 |
| \% Approach | 18.5\% | 81.5\% | 0\% | - | - | 43.0\% | 57.0\% | 0\% | - | - | 87.5\% | 12.5\% | 0\% | - | - | - |
| \% Total | 3.4\% | 14.8\% | 0\% | 18.1\% | - | 32.9\% | 43.6\% | 0\% | 76.5\% | - | 4.7\% | 0.7\% | 0\% | 5.4\% | - | - |
| PHF | 0.417 | 0.688 | - | 0.844 | - | 0.721 | 0.428 | - | 0.548 | - | 0.438 | 0.250 | - | 0.400 | - | 0.582 |
| Lights | 5 | 21 | 0 | 26 | - | 48 | 60 | 0 | 108 | - | 7 | 1 | 0 | 8 | - | 142 |
| \% Lights | 100\% | 95.5\% | 0\% | 96.3\% | - | 98.0\% | 92.3\% | 0\% | 94.7\% | - | 100\% | 100\% | 0\% | 100\% | - | 95.3\% |
| Articulated Trucks and Single-Unit Trucks | 0 | 1 | 0 | 1 | - | 0 | 1 | 0 | 1 | - | 0 | 0 | 0 | 0 | - | 2 |
| \% Articulated Trucks and Single-Unit Trucks | 0\% | 4.5\% | 0\% | 3.7\% | - | 0\% | 1.5\% | 0\% | 0.9\% | - | 0\% | 0\% | 0\% | 0\% | - | 1.3\% |
| Buses | 0 | 0 | 0 | 0 | - | 1 | 4 | 0 | 5 | - | 0 | 0 | 0 | 0 | - | 5 |
| \% Buses | 0\% | 0\% | 0\% | 0\% | - | 2.0\% | 6.2\% | 0\% | 4.4\% | - | 0\% | 0\% | 0\% | 0\% | - | 3.4\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 |
| \% Bicycles on Road | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% |
| Pedestrians | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 1 |  |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | 0\% | - | - | - | - | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | 0 | - | - | - | - | 1 | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | - | - | - | - | - | 100\% | - | - | - | - | 0\% | - |

[^4]South Street-Mulberry Street Weekday AM - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042879, Location: 41.926015, -73.907341

## [N] Mulberry St

Total: 78
In: 8 Out: 70


65

East Market Street-N Parsonage Street Weekda... - TMC
Wed Mar 1, 2023
Full Length (7 AM-9 AM)
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042889, Location: 41.927228, -73.90652

Provided by: Creighton Manning Engineering, LLP 2 Winners Circle, Albany, NY, 12206, US

| Leg <br> Direction | East Market St <br> Eastbound |  |  |  |  |  | East Market St Westbound |  |  |  |  |  | N Parsonage St Northbound |  | N Parsonage St <br> Southbound |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R | U | App | Ped* | L | T | R |  | App | Ped* | App | Ped* | L | T | R | U | App | Ped* | Int |
| 2023-03-01 7:00AM | 0 | 18 | 7 | 0 | 26 | 0 | 10 | 20 | 1 | 0 | 31 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 69 |
| 7:16AM | 1 | 12 | 9 | 0 | 22 | 0 | 18 | 31 | 1 | 0 | 60 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 3 | 74 |
| 7:30AM | 0 | 13 | 23 | 0 | 35 | 0 | 44 | 35 | 2 | 0 | 82 | 2 | 0 | 0 | 1 | 11 | 0 | 0 | 12 | 0 | 130 |
| 7:46AM | 4 | 18 | 24 | 0 | 45 | 0 | 33 | 45 | 4 | 0 | 83 | 1 | 0 | 0 | 1 | 9 | 0 | 0 | 10 | 1 | 139 |
| Hourly Total | 6 | 51 | 53 | 0 | 129 | 0 | 106 | 133 | 8 | 0 | 245 | 3 | 0 | 0 | 3 | 24 | 0 | 0 | 27 | 4 | 402 |
| 8:00AM | 0 | 19 | 6 | 0 | 24 | 0 | 10 | 38 | 0 | 0 | 48 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 6 | 0 | 77 |
| 8:16AM | 0 | 19 | 7 | 0 | 25 | 0 | 7 | 39 | 2 | 0 | 48 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 1 | 77 |
| 8:30AM | 0 | 16 | 13 | 0 | 28 | 1 | 12 | 28 | 2 | 0 | 42 | 0 | 0 | 0 | 2 | 7 | 0 | 0 | 9 | 0 | 79 |
| 8:46AM | 2 | 24 | 13 | 0 | 39 | 0 | 10 | 49 | 4 | 0 | 53 | 0 | 0 | 0 | 2 | 4 | 2 | 0 | 8 | 0 | 110 |
| Hourly Total | 2 | 77 | 38 | 0 | 117 | 1 | 39 | 164 | 8 | 0 | 201 | 0 | 0 | 0 | 5 | 15 | 3 | 0 | 26 | 1 | 343 |
| 9:00AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Hourly Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 7 | 138 | 101 | 0 | 245 | 1 | 144 | 287 | 15 | 0 | 447 | 3 | 0 | 0 | 9 | 40 | 3 | 0 | 62 | 6 | 746 |
| \% Approach | 2.8\% 6 | 65.1\% 4 | 41.1\% 0\% |  | - | - | 32.2\% 5 | 54.2\% | 3.5\% 0 | \% | - | - | - | - | 17.3\% 7 | 75.9\% | 6.8\% 0 |  | - |  | - |
| \% Total | 0.9\% 1 | 18.6\% 1 | 13.5\% 0\% | \% | 33.0\% |  | 19.3\% | 38.6\% | 2.1\% 0\% | 0\% 5 | 50.0\% | - | 0\% | - | 1.2\% | 6.4\% | 0.4\% 0 |  | 7.0\% |  |  |
| Lights | 7 | 131 | 97 | 0 | 236 | - | 134 | 280 | 15 | 0 | 430 | - | 0 | - | 9 | 35 | 3 | 0 | 48 |  | 713 |
| \% Lights | 100\% 9 | 94.9\% 9 | 95.0\% 0\% | \% 9 | 96.6\% |  | 93.1\% 9 | 97.5\% | 100\% 0\% | 0\% 9 | 95.2\% | - | - | - | 100\% 9 | 90.0\% | 100\% 0 | \% 9 | 92.3\% |  | 96.7\% |
| Articulated Trucks and Single-Unit Trucks | 0 | 7 | 0 | 0 | 7 | - | 0 | 5 | 0 | 0 | 5 | - | 0 | - | 0 | 1 | 0 | 0 | 1 | - | 14 |
| \% Articulated Trucks and SingleUnit Trucks | 0\% | 6.1\% | 0\% 0\% |  | 2.8\% | - | 0\% | 2.1\% | 0\% 0\% |  | 1.3\% | - | - | - | 0\% | 2.6\% | 0\% 0 |  | 1.9\% | - | 1.9\% |
| Buses | 0 | 0 | 4 | 0 | 4 | - | 10 | 0 | 0 | 0 | 10 | - | 0 | - | 0 | 1 | 0 | 0 | 1 | - | 16 |
| \% Buses | 0\% | 0\% | 4.0\% 0\% | \% | 1.5\% | - | 5.9\% | 0\% | 0\% 0\% | \% | 2.2\% | - | - | - | 0\% | 2.6\% | 0\% 0 |  | 1.9\% | - | 2.0\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 0 | 1 | - | 0 | - | 0 | 2 | 0 | 0 | 2 |  | 3 |
| \% Bicycles on Road | 0\% | 0\% | 0\% 0\% |  | 0\% | - | 0\% | 0.3\% | 0\% 0\% | \% | 0.2\% | - | - | - | 0\% | 6.0\% | 0\% 0 |  | 3.8\% |  | 0.4\% |
| Pedestrians | - | - | - | - | - | 1 | - | - | - | - | - | 3 | - | 0 | - | - | - | - | - | 6 |  |
| \% Pedestrians | - | - | - | - |  | 100\% | - | - | - | - |  | 100\% | - | - | - | - | - | - |  | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | 0 | - | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - | - | - | - | - | - | - | 0\% | - |

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Wed Mar 1, 2023
Full Length (7 AM-9 AM)
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042889, Location: 41.927228, -73.90652

Provided by: Creighton Manning
Engineering, LLP
2 Winners Circle, Albany, NY, 12206, US
[N] N Parsonage St
Total: 75
In: 52 Out: 23


Out: 285 In: 0
Total: 285
[S] N Parsonage St

East Market Street-N Parsonage Street Weekda... - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042889, Location: 41.927228, -73.90652

Provided by: Creighton Manning Engineering, LLP 2 Winners Circle,
Albany, NY, 12206, US

| Leg <br> Direction | East Market St <br> Eastbound |  |  |  |  |  | East Market St <br> Westbound |  |  |  |  |  | N Parsonage St Northbound |  | N Parsonage St <br> Southbound |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R |  | App |  | L | T | R | U | App | Ped* | App | Ped* | L | T | R | U | App | Ped* |  |
| 2023-03-01 7:30AM | 0 | 13 | 23 | 0 | 35 | 0 | 44 | 35 | 2 | 0 | 82 | 2 | 0 | 0 | 1 | 11 | 0 | 0 | 12 | 0 | 130 |
| 7:46AM | 4 | 18 | 24 | 0 | 45 | 0 | 33 | 45 | 4 | 0 | 83 | 1 | 0 | 0 | 1 | 9 | 0 | 0 | 10 | 1 | 139 |
| 8:00AM | 0 | 19 | 6 | 0 | 24 | 0 | 10 | 38 | 0 | 0 | 48 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 6 | 0 | 77 |
| 8:16AM | 0 | 19 | 7 | 0 | 25 | 0 | 7 | 39 | 2 | 0 | 48 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 1 | 77 |
| Total | 4 | 59 | 69 | 0 | 132 | 0 | 94 | 169 | 8 | 0 | 251 | 3 | 0 | 0 | 4 | 26 | 1 | 0 | 30 | 2 | 423 |
| \% Approach | 3.0\% 6 | 62.3\% | 44.7\% 0\% | \% | - |  | 35.0\% 5 | 50.9\% | 3.1\% 0 | \% |  | - | - | - | 13.3\% | 83.3\% | 3.3\% 0\% |  | - |  | - |
| \% Total | 0.9\% 1 | 15.3\% 1 | 13.9\% 0\% | \% 3 | 31.2\% |  | 22.2\% | 37.5\% | 1.9\% 0 | \% 5 | 51.7\% | - | 0\% | - | 0.9\% | 6.9\% | 0.2\% 0\% |  | 7.1\% |  | - |
| PHF | 0.260 | 0.908 | 0.516 | - 0 | 0.717 | - | 0.634 | 0.878 | 0.600 | - | 0.793 | - | - | - | 0.600 | 0.6580 | 0.260 | - 0 | 0.526 |  | 0.754 |
| Lights | 4 | 55 | 67 | 0 | 127 | - | 89 | 166 | 8 | 0 | 262 | - | 0 | - | 4 | 24 | 1 | 0 | 29 | - | 408 |
| \% Lights | 100\% 9 | 96.7\% 9 | 95.5\% 0\% | \% 9 | 95.2\% |  | 94.7\% | 97.6\% | 100\% 0 | \% 9 | 95.5\% | - | - | - | 100\% | 95.0\% 1 | 100\% 0\% | \% 9 | 5.7\% |  | 95.6\% |
| Articulated Trucks and Single-Unit Trucks | 0 | 3 | 0 | 0 | 3 | - | 0 | 3 | 0 | 0 | 3 | - | 0 | - | 0 | 1 | 0 | 0 | 1 | - | 7 |
| \% Articulated Trucks and SingleUnit Trucks | 0\% | 4.3\% | 0\% 0\% | \% | 2.3\% | - | 0\% | 1.9\% | 0\% 0\% |  | 1.1\% | - | - | - | 0\% | 4.0\% | 0\% 0\% |  | 3.3\% | - | 1.7\% |
| Buses | 0 | 0 | 2 | 0 | 2 | - | 6 | 0 | 0 | 0 | 6 | - | 0 | - | 0 | 0 | 0 | 0 | 0 |  | 7 |
| \% Buses | 0\% | 0\% | 3.4\% 0\% | \% | 1.6\% | - | 6.3\% | 0\% | 0\% 0\% | \% | 1.9\% | - | - | - | 0\% | 0\% | 0\% 0\% | \% | 0\% | - | 1.7\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 0 | 1 | - | 0 | - | 0 | 0 | 0 | 0 | 0 |  | 1 |
| \% Bicycles on Road | 0\% | 0\% | 0\% 0\% | \% | 0\% | - | 0\% | 0.5\% | 0\% 0\% | \% | 0.4\% | - | - | - | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0.2\% |
| Pedestrians | - | - | - | - | - | 0 | - | - | - | - | - | 3 | - | 0 | - | - | - | - | - | 2 |  |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - |  | 100\% | - | - | - | - | - | - |  | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | 0 | - | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | - | - | - | - | - | - | - | 0\% | - | - | - | - | - | - | - | 0\% | - |

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

East Market Street-N Parsonage Street Weekda... - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042889, Location: 41.927228, -73.90652

Provided by: Creighton Manning
Engineering, LLP
2 Winners Circle, Albany, NY, 12206, US
[N] N Parsonage St
Total: 75
On: 41 6 Ot: 25 [W] East Market St
Total: 535
on: $245 \quad 6 \mathrm{Ot}: 2 \mathrm{ul}$


6 Ot: 289
0) 1

Total: 289
[S] N Parsonage St

South Street-N Parsonage St-S Parsonage St W... - TMC
Wed Mar 1, 2023
Full Length (7 AM-9 AM)
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042892, Location: 41.926306, -73.905519

Provided by: Creighton Manning Engineering, LLP 2 Winners Circle, Albany, NY, 12205, US

| Leg <br> Direction | South St Eastbound |  |  |  |  | South St <br> Westbound |  |  |  |  | S Parsonage St Northbound |  |  |  |  | N Parsonage St Southbound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | T | R |  | App | Ped* | L | T | U | App | Ped* | L | R | U | App | Ped* | L | T | R | App | Ped* | Int |
| 2023-03-01 7:00AM | 2 | 1 | 0 | 3 | 0 | 4 | 2 | 0 | 6 | 0 | 2 | 6 | 0 | 8 | 2 | 0 | 18 | 1 | 19 | 0 | 36 |
| 7:15AM | 0 | 4 | 0 | 4 | 0 | 5 | 1 | 0 | 6 | 1 | 3 | 9 | 0 | 12 | 0 | 0 | 28 | 0 | 28 | 0 | 50 |
| 7:30AM | 1 | 7 | 0 | 8 | 0 | 5 | 4 | 0 | 9 | 2 | 23 | 17 | 0 | 40 | 0 | 0 | 77 | 1 | 78 | 1 | 135 |
| 7:45AM | 1 | 7 | 0 | 8 | 1 | 9 | 7 | 0 | 16 | 0 | 43 | 42 | 0 | 85 | 0 | 0 | 67 | 0 | 67 | 0 | 176 |
| Hourly Total | 4 | 19 | 0 | 23 | 1 | 23 | 14 | 0 | 37 | 3 | 71 | 74 | 0 | 145 | 2 | 0 | 190 | 2 | 192 | 1 | 397 |
| 8:00AM | 4 | 2 | 0 | 6 | 0 | 7 | 0 | 0 | 7 | 0 | 21 | 19 | 0 | 40 | 0 | 0 | 17 | 0 | 17 | 0 | 70 |
| 8:15AM | 2 | 4 | 0 | 6 | 0 | 8 | 7 | 0 | 15 | 0 | 6 | 7 | 0 | 13 | 0 | 0 | 17 | 0 | 17 | 0 | 51 |
| 8:30AM | 4 | 9 | 0 | 13 | 0 | 3 | 1 | 0 | 4 | 0 | 13 | 15 | 0 | 28 | 0 | 0 | 31 | 0 | 31 | 0 | 76 |
| 8:45AM | 2 | 5 | 0 | 7 | 1 | 3 | 2 | 0 | 5 | 0 | 38 | 27 | 0 | 65 | 0 | 1 | 25 | 0 | 26 | 0 | 103 |
| Hourly Total | 12 | 20 | 0 | 32 | 1 | 21 | 10 | 0 | 31 | 0 | 78 | 68 | 0 | 146 | 0 | 1 | 90 | 0 | 91 | 0 | 300 |
| Total | 16 | 39 | 0 | 55 | 2 | 44 | 24 | 0 | 68 | 3 | 149 | 142 | 0 | 291 | 2 | 1 | 280 | 2 | 283 | 1 | 697 |
| \% Approach | 29.1\% 7 | 70.9\% 0\% | \% | - | - | 64.7\% | 35.3\% 0 |  | - |  | 51.2\% | 48.8\% 0 |  | - |  | 0.4\% 9 | 98.9\% | 0.7\% | - |  | - |
| \% Total | 2.3\% | 5.6\% 0\% | \% | 7.9\% | - | 6.3\% | 3.4\% 0 | \% | 9.8\% |  | 21.4\% | 20.4\% 0 | 0\% 4 | 41.8\% | - | 0.1\% | 40.2\% | 0.3\% | 40.6\% | - | - |
| Lights | 15 | 38 | 0 | 53 | - | 44 | 23 | 0 | 67 | - | 144 | 133 | 0 | 277 | - | 1 | 263 | 1 | 265 | - | 662 |
| \% Lights | 93.8\% | 97.4\% 0\% | \% 9 | 96.4\% | - | 100\% | 95.8\% 0 | \% 9 | 98.5\% |  | 96.6\% | 93.7\% 0 | 0\% 9 | 95.2\% | - | 100\% 9 | 93.9\% 5 | 50.0\% | 93.6\% |  | 95.0\% |
| Articulated Trucks and Single-Unit Trucks | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | - | 1 | 2 | 0 | 3 | - | 0 | 1 | 0 | 1 | - | 5 |
| \% Articulated Trucks and SingleUnit Trucks | 6.3\% | 0\% 0\% | \% | 1.8\% | - | 0\% | 0\% 0 |  | 0\% |  | 0.7\% | 1.4\% 0 |  | 1.0\% | - | 0\% | 0.4\% | 0\% | 0.4\% | - | 0.7\% |
| Buses | 0 | 1 | 0 | 1 | - | 0 | 1 | 0 | 1 | - | 4 | 7 | 0 | 11 | - | 0 | 14 | 1 | 15 |  | 28 |
| \% Buses | 0\% | 2.6\% 0\% | \% | 1.8\% | - | 0\% | 4.2\% 0 | \% | 1.5\% |  | 2.7\% | 4.9\% 0 | 0\% | 3.8\% | - | 0\% | 5.0\% 5 | 50.0\% | 5.3\% |  | 4.0\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 2 | 0 | 2 |  | 2 |
| \% Bicycles on Road | 0\% | 0\% 0\% |  | 0\% | - | 0\% | 0\% 0 |  | 0\% | - | 0\% | 0\% 0 |  | 0\% | - | 0\% | 0.7\% | 0\% | 0.7\% |  | 0.3\% |
| Pedestrians | - | - | - | - | 2 | - | - | - | - | 3 | - | - | - | - | 2 | - | - | - | - | 1 |  |
| \% Pedestrians | - | - | - | - | 100\% | - | - | - | - | 100\% | - | - | - |  | 100\% | - | - | - |  | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - |  | 0\% | - | - | - | - | 0\% | - | - | - |  | 0\% | - | - | - | - | 0\% | - |

[^5]Total: 283
In: $283 \quad$ Out: 0


Out: 363 In: 291
Total: 654
[S] S Parsonage St

South Street-N Parsonage St-S Parsonage St W... - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042892, Location: 41.926306, -73.905519

Provided by: Creighton Manning Engineering, LLP 2 Winners Circle,
Albany, NY, 12205, US

| Leg <br> Direction | South St Eastbound |  |  |  |  | South St Westbound |  |  |  |  | S Parsonage St Northbound |  |  |  |  | N Parsonage St Southbound |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | T | R | U | App | Ped* | L | T | U | App | Ped* | L | R | U | App |  |  | L | T | R | App | Ped* |  |
| 2023-03-01 7:30AM | 1 | 7 | 0 | 8 | 0 | 5 | 4 | 0 | 9 | 2 | 23 | 17 | 0 | 40 | 0 |  | 0 | 77 | 1 | 78 | 1 | 135 |
| 7:45AM | 1 | 7 | 0 | 8 | 1 | 9 | 7 | 0 | 16 | 0 | 43 | 42 | 0 | 85 | 0 |  | 0 | 67 | 0 | 67 | 0 | 176 |
| 8:00AM | 4 | 2 | 0 | 6 | 0 | 7 | 0 | 0 | 7 | 0 | 21 | 19 | 0 | 40 | 0 |  | 0 | 17 | 0 | 17 | 0 | 70 |
| 8:15AM | 2 | 4 | 0 | 6 | 0 | 8 | 7 | 0 | 15 | 0 | 6 | 7 | 0 | 13 | 0 |  | 0 | 17 | 0 | 17 | 0 | 51 |
| Total | 8 | 20 | 0 | 28 | 1 | 29 | 18 | 0 | 47 | 2 | 93 | 85 | 0 | 178 | 0 |  | 0 | 178 | 1 | 179 | 1 | 432 |
| \% Approach | 28.6\% | 71.4\% 0\% |  | - | - | 61.7\% | 38.3\% |  | - | - | 52.2\% | 47.8\% 0 |  | - | - |  | \% 9 | 99.4\% 0 | 0.6\% | - |  | - |
| \% Total | 1.9\% | 4.6\% 0\% | \% | 6.5\% | - | 6.7\% | 4.2\% | 0\% 1 | 10.9\% |  | 21.5\% | 19.7\% 0 | 0\% | 41.2\% |  |  | \%\% 4 | 41.2\% 0 | 0.2\% | 41.4\% |  | - |
| PHF | 0.500 | 0.714 | 0 | 0.875 | - | 0.806 | 0.643 | - 0 | 0.734 | - | 0.541 | 0.506 | - | 0.524 | - |  | - 0 | 0.5780 | 0.250 | 0.574 | - | 0.614 |
| Lights | 7 | 20 | 0 | 27 | - | 29 | 17 | 0 | 46 | - | 89 | 78 | 0 | 167 | - |  | 0 | 171 | 0 | 171 | - | 411 |
| \% Lights | 87.5\% | 100\% 0\% | \% 96 | 96.4\% | - | 100\% 9 | 94.4\% | 0\% 9 | 97.9\% | - | 95.7\% | 91.8\% 0 | 0\% 9 | 93.8\% | - |  | \%\% 9 | 96.1\% | 0\% | 95.5\% |  | 95.1\% |
| Articulated Trucks and Single-Unit Trucks | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | - | 1 | 0 | 0 | 1 | - |  | 0 | 1 | 0 | 1 | - | 3 |
| \% Articulated Trucks and Single-Unit Trucks | 12.5\% | 0\% 0\% | \% | 3.6\% | - | 0\% | 0\% |  | 0\% | - | 1.1\% | 0\% 0 |  | 0.6\% |  |  | \%\% | 0.6\% | 0\% | 0.6\% | - | 0.7\% |
| Buses | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 1 | - | 3 | 7 | 0 | 10 | - |  | 0 | 6 | 1 | 7 | - | 18 |
| \% Buses | 0\% | 0\% 0\% | \% | 0\% | - | 0\% | 5.6\% | 0\% | 2.1\% | - | 3.2\% | 8.2\% 0 | 0\% | 5.6\% | - |  | 0\% | 3.4\% 1 | 100\% | 3.9\% | - | 4.2\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |  | 0 | 0 | 0 | 0 | - | 0 |
| \% Bicycles on Road | 0\% | 0\% 0\% | \% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% 0 | 0\% | 0\% |  |  | 0\% | 0\% | 0\% | 0\% | - | 0\% |
| Pedestrians | - | - | - | - | 1 | - | - | - | - | 2 | - | - | - | - | 0 |  | - | - | - | - | 1 |  |
| \% Pedestrians | - | - | - | - | 100\% | - | - | - | - | 100\% | - | - | - | - | - |  | - | - | - |  | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 |  | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | 0\% | - | - | - | - | 0\% | - | - | - | - | - |  | - | - | - | - | 0\% | - |

[^6]South Street-N Parsonage St-S Parsonage St W... - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042892, Location: 41.926306, -73.905519
[N] N Parsonage St
Total: 179
In: $179 \quad$ Out: 0


In: 178
Total: 405
[S] S Parsonage St

## East Market Street-Mulberry Street Weekday A... - TMC

Wed Mar 1, 2023
Full Length (7 AM-9 AM)
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

Provided 5y: Creighton Manning bngineering, LLP 2 Winners Circle,
ID: 1042872, Location: 41.927144, -73.907469
Al5any, EN, 12206, US

| Leg <br> Direction | b ast Market St bast5ound |  |  |  |  |  | bast Market St West5ound |  |  |  |  |  | Mul5erry St E orth5ound |  |  |  |  |  | Mul5erry St South5ound |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R | U | AYY | Pedp | L | T | R | U | AYY | Pedp | L | T | R | U | AYY | Pedp | L | T | R | U | AYY | Pedp |  |
| 2023-03-01 7:00AM | 2 | 21 | 0 | 0 | 23 | 0 | 0 | 1* | 4 | 0 | 20 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 6 | 0 | 0 | 0 | 6 | 2 | 60 |
| 7:16AM | 3 | 1* | 0 | 0 | 19 | 0 | 0 | 26 | 8 | 0 | 33 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 6 | 4 | 0 | 0 | 9 | 2 | *3 |
| 7:30AM | 2 | 30 | 0 | 0 | 32 | 1 | 0 | 27 | 8 | 0 | 36 | 0 | 3 | 9 | 0 | 0 | 12 | 2 | 10 | 2 | 2 | 0 | 14 | 0 | 93 |
| 7:46AM | 0 | 32 | 2 | 0 | 34 | 1 | 4 | 29 | 11 | 0 | 44 | 2 | 10 | 20 | 3 | 0 | 33 | 0 | 10 | 2 | 3 | 0 | 16 | 2 | 12* |
| Hourly Total | 7 | 99 | 2 | 0 | 108 | 2 | 4 | 97 | 31 | 0 | 132 | 3 | 14 | 32 | 3 | 0 | 49 | 2 | 30 | 8 | 6 | 0 | 43 | * | 332 |
| 8:00AM | 2 | 16 | 0 | 0 | 17 | 0 | 0 | 32 | 7 | 0 | 39 | 0 | 2 | 10 | 0 | 0 | 12 | 0 | 8 | 1 | 1 | 0 | 10 | 3 | 78 |
| 8:16AM | 2 | 21 | 0 | 0 | 23 | 0 | 1 | 31 | 8 | 0 | 40 | 0 | 2 | 3 | 0 | 0 | 6 | 1 | 6 | 0 | 3 | 0 | 8 | 1 | 7* |
| 8:30AM | 2 | 21 | 0 | 0 | 23 | 2 | 2 | 28 | 4 | 0 | 34 | 0 | 10 | 6 | 3 | 0 | 18 | 2 | 4 | 2 | 0 | 0 | * | 0 | 81 |
| 8:46AM | 0 | 33 | 1 | 0 | 34 | 1 | 1 | 39 | 12 | 0 | 62 | 0 | 13 | 17 | 1 | 0 | 31 | 2 | 3 | 3 | 3 | 0 | 9 | 1 | 12* |
| Hourly Total | * | 90 | 1 | 0 | 97 | 3 | 4 | 130 | 31 | 0 | 1*6 | 0 | 27 | 36 | 4 | 0 | ** | 6 | 20 | * | 7 | 0 | 33 | 6 | 3*1 |
| 9:00AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Hourly Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Total | 13 | 189 | 3 | 0 | 206 | 6 | 8 | 228 | *2 | 0 | 298 | 3 | 41 | *7 | 7 | 0 | 116 | 7 | 60 | 14 | 12 | 0 | 7* | 11 | *94 |
| \% AYYroach | *.3\% | 92.2\% | 1.6\% 0\% |  | - |  | 2.7\% 7 | 7*.6\% | 20.8\% 0 |  | - |  | -36.7\% | 68.3\% | *.1\% 0 |  | - |  | *6.8\% | 18.4\% | 16.8\% 0 |  | - | - | - |
| \% Total | 1.9\% | 27.2\% | 0.4\% 0\% | \% 2 | 29.6\% | - | 1.2\% | 32.9\% | 8.9\% 0 | 0\% 4 | 42.9\% |  | 6.9\% | 9.7\% | 1.0\% 0 | 0\% | 1*.*\% |  | 7.2\% | 2.0\% | 1.7\% 0 | \% | 1.0\% |  |  |
| Lights | 11 | 182 | 2 | 0 | 196 | - | 8 | 218 | *1 | 0 | 287 |  | 40 | *3 | 7 | 0 | 110 |  | 48 | 14 | 12 | 0 | 74 |  | ** |
| \% Lights | 84.*\% | 9*.3\% * | **.7\% 0\% | \% 9 | 96.1\% | - | 100\% | 96.*\% | 98.4\% 0 | 0\% 9 | 9*.3\% |  | 97.*\% | 94.0\% | 100\% 0 | 0\% | 96.7\% |  | 9*.0\% | 100\% | 100\% 0 | \% 9 | 97.4\% |  | 9*.0\% |
| Articulated Trucks and Single-Unit Trucks | 2 | 2 | 1 | 0 | 6 | - | 0 | 9 | 0 | 0 | 9 | - | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |  | 14 |
| \% Articulated Trucks and Single-Unit Trucks | 16.4\% | 1.1\% | 33.3\% 0\% |  | 2.4\% | - | 0\% | 3.9\% | 0\% 0 |  | 3.0\% | - | 0\% | 0\% | 0\% 0 |  | 0\% |  | 0\% | 0\% | 0\% 0 |  | 0\% |  | 2.0\% |
| Buses | 0 | 6 | 0 | 0 | 6 | - | 0 | 0 | 0 | 0 | 0 | - | - 1 | 4 | 0 | 0 | 6 |  | 2 | 0 | 0 | 0 | 2 |  | 12 |
| \% Buses | 0\% | 2.*\% | 0\% 0\% | \% | 2.4\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 2.4\% | *.0\% | 0\% 0 |  | 4.3\% |  | 4.0\% | 0\% | 0\% 0 | \% | 2.*\% |  | 1.7\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | 0 | - | 0 | 1 | 1 | 0 | 2 | - | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |  | 2 |
| \% Bicycles on Road | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0.4\% | 1.*\% 0 |  | 0.7\% |  | 0\% | 0\% | 0\% 0 |  | 0\% |  | 0\% | 0\% | 0\% 0 |  | 0\% |  | 0.3\% |
| Pedestrians | - | - | - | - | - | 4 | - | - | - | - | - | 3 | - | - | - | - | - | 7 | - | - | - | - | - | 11 |  |
| \% Pedestrians | - | - | - | - | - 8 | 80.0\% | - | - | - | - |  | 100\% | - | - | - | - |  | 100\% | - | - | - | - | - | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | - | 1 | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | - | 20.0\% | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - |

${ }^{P}$ Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

East Market Street-Mulberry Street Weekday A... - TMC
Wed Mar 1, 2023
Full Length (7 AM-9 AM)
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042872, Location: 41.927144, -73.907459

Provided by: Creighton Manning
Engineering, LLP
2 Winners Circle, Albany, NY, 12205, US
[N] Mulberry St
Total: 218
In: 76 Out: 142


Out: 25 In: 115
Total: 140
[S] Mulberry St

East Market Street-Mulberry Street Weekday A... - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042872, Location: 419 27144, -739 0746.
Provided 5y: Creighton Manning bngineering, LLP 2 Winners Circle,
Al5any, EN, 12206, US

| Leg <br> Direction | bast Market St bast5ound |  |  |  |  |  | bast Market St West5ound |  |  |  |  |  | Mul5erry St E orth5ound |  |  |  |  |  | Mul5erry St South5ound |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R | U | AYY | Pedp | L | T | R | U | AYY | Pedp | L | T | R | U | AYY | Pedp | L | T | R | U | AYY | Pedp |  |
| 2023-03-01 7:30AM | 2 | 30 | 0 | 0 | 32 | 1 | 0 | 27 | 8 | 0 | 36 | 0 | 3 |  | 0 | 0 | 12 | 2 | 10 | 2 | 2 | 0 | 14 | 0 | . 3 |
| 7:46AM | 0 | 32 | 2 | 0 | 34 | 1 | 4 | 2. | 11 | 0 | 44 | 2 | 10 | 20 | 3 | 0 | 33 | 0 | 10 | 2 | 3 | 0 | 16 | 2 | 12* |
| 8:00AM | 2 | 16 | 0 | 0 | 17 | 0 | 0 | 32 | 7 | 0 | 3. | 0 | 2 | 10 | 0 | 0 | 12 | 0 | 8 | 1 | 1 | 0 | 10 | 3 | 78 |
| 8:16AM | 2 | 21 | 0 | 0 | 23 | 0 | 1 | 31 | 8 | 0 | 40 | 0 | 2 | 3 | 0 | 0 | 6 | 1 | 6 | 0 | 3 | 0 | 8 | 1 | 7* |
| Total | * | . 8 | 2 | 0 | 10* | 2 | 6 | 11. | 34 | 0 | 168 | 2 | 17 | 42 | 3 | 0 | *2 | 3 | 33 | 6 | 6 . | 0 | 47 | * | 373 |
| \% AYYroach | 69\% | . 296\% | $19 \% 0 \%$ |  | - |  | 39\% | 769\% | 2196\% 0 |  | - |  | 279\% | *79\%\% | $48 \% 0$ |  | - |  | 709\% | 10\%\% | 1. 91\% 0 | \% | - | - | - |
| \% Total | 19\%\% | 2*®\% | 09\%\% 0\% | \% 2 | 289\%\% |  | 18\% | 319 \% | . 91\% 0 | \% 4 | 4294\% |  | 49\%\% | 119\% | 0®\% 0\% | \% 1 | 1*9*\% |  | 89\%\% | 18\% | 29\% 0\% | \% 12 | 12\%\% | - | - |
| PHF | 09760 | 057** 0 | 0960 | - | 0977. |  | 0913 | 0922 | 09773 | - 0 | 0913 |  | 09426 | $0 ¢ 626$ | 0960 | - 0 | 09470 |  | $0 ¢ 826$ | 0\% 26 | 09760 | - 0 | 0978 |  | 09744 |
| Lights | * | . 6 | 2 | 0 | 103 |  | 6 | 114 | 34 | 0 | 163 |  | 1* | 38 | 3 | 0 | 67 |  | 32 | 6 | 6 . | 0 | 4* |  | 36. |
| \% Lights | 100\% . | . 9 \% 1 | 100\% 0\% | \%. | 79\% |  | 100\% . | . $68 \%$ | 100\% 0 | \%. | *@\% |  | 491\%. | . $096 \%$ | 100\% 0\% | \%. | 19 \% |  | 790\% | 100\% | 100\% 0 | \%. 7 | $79 \%$ |  | *Q\% |
| Articulated Trucks and Single-Unit Trucks | 0 | 2 | 0 | 0 | 2 |  | 0 | 4 | 0 | 0 | 4 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | * |
| \% Articulated Trucks and Single-Unit Trucks | 0\% | 20\% | 0\% 0\% |  | $19 \%$ | - | 0\% | 394\% | 0\% 0 |  | 296\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 19\%\% |
| Buses | 0 | 1 | 0 | 0 | 1 |  | 0 | 0 | 0 | 0 | 0 |  | 1 | 4 | 0 | 0 | 6 |  | 1 | 0 | 0 | 0 | 1 | - | 7 |
| \% Buses | 0\% | 19\% | 0\% 0\% | \% | 09\% |  | 0\% | 0\% | 0\% 0 |  | 0\% | - | 69 \% | . 96\% | 0\% 0\% | \% | 891\% |  | 390\% | 0\% | 0\% 0 | \% | 291\% | - | $19 \%$ |
| Bicycles on Road | 0 | 0 | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | - | 1 |
| \% Bicycles on Road | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0®\% | 0\% 0 | \% | 0\%\% | - | 0\% | 0\% | 0\% 0\% | \% | 0\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% | - | 0®\% |
| Pedestrians | - | - | - | - | - | 1 | - | - | - | - | - | 2 | - | - | - | - | - | 3 | - | - | - - | - | - | * |  |
| \% Pedestrians | - | - | - | - | -6 | 609\%\% | - | - | - | - |  | 100\% | - | - | - | - |  | 100\% | - | - | - | - |  | 100\% |  |
| Bicycles on Crosswalk | - | - | - | - | - | 1 | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | -6 | 609\%\% | - | - | - - | - | - | 0\% | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - |

${ }^{\text {P Pedestrians and Bicycles on Crosswalk9L: Left, R: Right, T: Thru, U: U-Turn }}$

East Market Street-Mulberry Street Weekday A... - TMC
Wed Mar 1, 2023
AM Peak (7:30 AM - 8:30 AM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042872, Location: 41.927144, -73.907459

Provided by: Creighton Manning
Engineering, LLP
2 Winners Circle, Albany, NY, 12205, US
[N] Mulberry St
Total: 218
$\mathrm{\nabla}$ : $04 \quad 6 \mathrm{ut}$ : O1


6 ut: $21 \quad \nabla: 91$
Total: 40
[S] Mulberry St

Wed Mar 1, 2023
Full Length (2 7MA 7M9
) ll Classes (Lights, ) rticulated Trucks and SingleAUnit Trucks, Buses, 7edestrians, BicPcles yn o yad, BicPcles yn CryssRalk9
) ll Mywev ents
nh D10-2: : 0, LycatiynD 1482. 016, Æ348053-1

7rywided bPDCreightyn Manning Engineering, LL7 2 Winners Circle,
) lbanP, NY, 12206, US

| Leg <br> I irectiyn | Syuth St <br> Eastbyund |  |  |  | Syuth St <br> Westbyund |  |  |  |  | MulberrP St Syuthbyund |  |  |  |  | mt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tive | L | T U | ) pp | 7ed* | T | o |  | ) pp | 7ed* | L | o | U | ) pp | 7ed* |  |
| 2023A3A01 2ID07M | 0 | 100 | 10 | 0 | - | 16 | 0 | 18 | 0 | 2 | 0 | 0 | 2 | 0 | 31 |
| 2D67M | 2 | 110 | 13 | 0 | 5 | 8 | 0 | 1. | 0 | 6 | - | 0 | 8 | 1 | 3: |
| 2[307M | 1 | 120 | 13 | 0 | 13 | 2- | 0 | 35 | 0 | : | 0 | 0 | : | 0 | 6: |
| 2B67M | 2 | 110 | 13 | 1 | 21 | -0 | 0 | . 1 | 0 | - | 2 | 0 | . | . | : 0 |
| HyurlP Tytal | 6 | -- 0 | -8 | 1 | -6 | : | 0 | 133 | 0 | 18 | . | 0 | 26 | 5 | 205 |
| 3D07M | 0 | 110 | 11 | 0 | 5 | 13 | 0 | 20 | 0 | . | 0 | 0 | . | 3 | 35 |
| 3D67M | 2 | 1- 0 | 1. | 0 | 1- | 21 | 0 | 36 | 0 | 3 | 0 | 0 | 3 | 0 | 6- |
| 35307M | 0 | 0 | . | 0 | 21 | 33 | 0 | 6- | 0 | - | 0 | 0 | - | 1 | .- |
| 3D67M | 1 | 60 | . | 0 | 5 | 8 | 0 | 1. | 0 | - | 0 | 0 | - | 0 | 2. |
| HyurlP Tytal | 3 | 3.0 | 38 | 0 | -8 | 5. | 0 | 126 | 0 | 15 | 0 | 0 | 15 | - | 1:1 |
| Tytal | : | $: 0$ | :: | 1 | 8- | 1. - | 0 | 26: | 0 | 3. | . | 0 | -2 | 11 | 3: : |
| \% ) ppryach | 841\% | 804\% 0\% | A | A | 3. 4 \% | . 34 \% |  | A | A | : 65\% | 1-4\% | 0\% | A | A | A |
| \% Tytal | 241\% | 204 \% 0\% | 224\% | A | 2- 4 \% | -24\% | 0\% | . . 4\% | A | 84\% | 14\% | 0\% | 104 \% | A | A |
| Lights | 5 | 5. 0 | :3 | A | 8 - | 16: | 0 | 262 | A | 3- | . | 0 | -0 | A | 356 |
| \% Lights | : 54\% | 864\% 0\% | 8-4\% | A | 100\% | 8. $4 \%$ | 0\% | 854\% | A | 8-4\% | 100\% | 0\% | 864\% | A | 8. 4 \% |
| ) rticulated Trucks and SingleAUnit Trucks | 1 | - 0 | 6 | A | 0 | 3 | 0 | 3 | A | 2 | 0 | 0 | 2 | A | 10 |
| \%) rticulated Trucks and SingleAUnit Trucks | 124\% | 64)\% 0\% | 64\% | A | 0\% | 14 \% |  | 14\% | A | 64 \% | 0\% |  | -4\% | A | 24 \% |
| Buses | 0 | $0 \quad 0$ | 0 | A | 0 | 3 | 0 | 3 | A | 0 | 0 | 0 | 0 | A | 3 |
| \% Buses | 0\% | 0\% 0\% | 0\% | A | 0\% | 14 \% |  | 14\% | A | 0\% | 0\% |  | 0\% | A | 04 \% |
| BicPcles yn o yad | 0 | $0 \quad 0$ | 0 | A | 0 | 0 | 0 | 0 | A | 0 | 0 | 0 | 0 | A | 0 |
| \% BicPcles yn o yad | 0\% | 0\% 0\% | 0\% | A | 0\% | 0\% |  | 0\% | A | 0\% | 0\% |  | 0\% | A | 0\% |
| 7edestrians | A | A A | A | 1 | A | A | A | A | 0 | A | A | A | A | 11 |  |
| \% 7edestrians | A | A A |  | 100\% | A | A | A A | A | A | A | A | A | A | 100\% | A |
| BicPcles yn CryssRalk | A | A A | A | 0 | A | A | A A | A | 0 | A | A | A | A | 0 |  |
| \% BicPcles yn CryssRalk | A | A A | A | 0\% | A | A | A | A | A | A | A | A | A | 0\% | A |

[^7]) ll Classes (Lights, ) rticulated Trucks and SingleAUnit Trucks, Buses, 7edestrians, BicPcles yn o yad, BicPcles yn CryssRalk9
) 11 Mywev ents
nh D10-2: : 0, LycatiynD-182. 016, Æ348053-1
[N] Mulberry St
Total: 073
$0: 30 \quad 2$ ut: 740
の 9


AM AeaP k2(7: AM - 3(7: AM8- ) OerawAeaPl Hbr
u wCvasses LLights, u rticovated TrocPs and Singve-Unit TrocPs, Boses, Aedestrians, Bicycves
H RHed, Bicycues H CrłsswavP8
u wMHOements
ID( 1072440, LHatiH( 719 2601: , -539 05371

ArHaded by( CreightH Manning Engineering, LLA 2 Winners Circue, u bany, NY, 1220: , US

| Leg <br> DirectiH | SHth St EastbHond |  |  |  |  | SHth St WestbЊnd |  |  |  |  | Mowerry St SHthbHond |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | U | u pp | Aed* | T | R | U | u pp | Aed* | L | R | U | u pp | Aed* | Int |
| 2023-03-01 2(7: AM | 2 | 11 | 0 | 13 | 1 | 21 | 70 | 0 | 61 | 0 | 7 | 2 | 0 | 6 | 6 | 40 |
| 3(00AM | 0 | 11 | 0 | 11 | 0 | 5 | 13 | 0 | 20 | 0 | 6 | 0 | 0 | 6 | 3 | 35 |
| 3(1: AM | 2 | 17 | 0 | 16 | 0 | 17 | 21 | 0 | 3: | 0 | 3 | 0 | 0 | 3 | 0 | : 7 |
| 3(30AM | 0 | 6 | 0 | 6 | 0 | 21 | 33 | 0 | : 7 | 0 | 7 | 0 | 0 | 7 | 1 | 67 |
| THav | 7 | 72 | 0 | 76 | 1 | 63 | 105 | 0 | 150 | 0 | 15 | 2 | 0 | 1. | 10 | 23: |
| \% u pprHach | 45\% | . $19 \%$ | 0\% | - | - | 3591\% | 629 \% | 0\% | - | - | 4. $9 \%$ | 109 \% | 0\% | - |  | - |
| \% THav | 15\% | 159 \% | 0\% | 1. $5 \%$ | - | 269\% | 7:9\% | 0\% | 529\% | - | 59\% | 09 \% | 0\% | 491\% | - | - |
| Al F | 0900 | 05: 0 | - | 091. | - | 05: 0 | 0966. | - | 09.5 | - | 0504 | 09: 0 | - | 05. 2 | - | 0537 |
| Lights | 7 | 3. | 0 | 73 | - | 63 | 103 | 0 | 166 | - | 15 | 2 | 0 | 1. | - | 224 |
| \% Lights | 100\% | . 29 \% | 0\% | . 39 \% | - | 100\% | . $63 \%$ | 0\% | . $596 \%$ | - | 100\% | 100\% | 0\% | 100\% | - | 590\% |
| u rticovated TrocPs and Single-Unit TrocPs | 0 | 3 | 0 | 3 | - | 0 | 1 | 0 | 1 | - | 0 | 0 | 0 | 0 | - | 7 |
| \% u rticovated TrocPs and Singe-Unit TrocPs | 0\% | 591\% 0 | 0\% | 69 \% | - | 0\% | 09 \% | 0\% | 096\% | - | 0\% | 0\% | 0\% | 0\% | - | 15\% |
| Boses | 0 | 0 | 0 | 0 | - | 0 | 3 | 0 | 3 | - | 0 | 0 | 0 | 0 | - | 3 |
| \% Boses | 0\% | 0\% | 0\% | 0\% | - | 0\% | 29\% | 0\% | 194\% | - | 0\% | 0\% | 0\% | 0\% | - | 18\% |
| Bicycves H RHa | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 |
| \% Bicycves H RHbd | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% |
| Aedestrians | - | - | - | - | 1 | - | - | - | - | 0 | - | - | - | - | 10 |  |
| \% Aedestrians | - | - | - | - | 100\% | - | - | - | - | - | - | - | - | - | 100\% | - |
| Bicycves H CrHswavP | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 |  |
| \% Bicycves H CrHswavP | - | - | - | - | 0\% | - | - | - | - | - | - | - | - | - | 0\% | - |

[^8][N] Mulberry St
Total: 130
In: 19 Out: 111


East Market Street-Mulberry Street Weekday S... - TMC
Wed Mar 1, 2023
Full Length (2 7MA 7M9
) ll Classes (Lights, ) rticulated Trucks and SingleAUnit Trucks, Buses, 7edestrians, BicPcles yn o yad, BicPcles yn CryssRalk9
) $1 l$ Mywev ents
nh D10-2: 43, LycatiynD-18 241-- , A38 04-6.
7rywided 5PDCreightyn Manning bngineering, LL7 2 Winners Circle,
) 15anP, EN, 12206, US

| Leg I irectiyn | bast Market St bast5yund |  |  |  |  |  | bast Market St <br> West5yund |  |  |  |  |  | Mul5errP St <br> Eyrth5yund |  |  |  |  |  | Mul5errP St Syuth5yund |  |  |  |  |  | mt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tive | L | T | o U |  | ) YY | 7edp | L | T | o |  | ) YY | 7edp |  | T | o |  | ) YY | 7edp | L | T | o | U | ) YY | 7edp |  |
| 2023A3A01 2D07M | 2 | 36 | 1 | 0 | 3: | - | 0 | 24 | 3 | 0 | 30 | 0 | 2 | 10 | 2 | 0 | 1- | 0 | . | 1 | 4 | 0 | 14 | 1 | . . |
| 2D67M | 2 | 3: | 2 | 0 | -2 | 0 | 2 | 30 | 11 | 0 | -3 | 1 | 2 | 4 | 1 | 0 | 10 | 1 | : | - | 3 | 0 | 16 | 0 | 110 |
| 21307M | 13 | -6 | 3 | 0 | *1 | 0 | 0 | 2 : | 3 | 0 | 31 | 0 | 6 | 20 | 0 | 0 | 26 | 0 | : | 6 | 6 | 0 | 1: | 1 | 136 |
| 2B67M | 1 | -3 | 1 | 0 | -6 | 3 | 2 | 30 | 11 | 0 | -3 | 0 | 10 | 2. | - | 0 | -3 | 22 | : | 6 | * | 0 | 1. | 2 | 160 |
| HyurlP Tytal | 1: | 1*1 | 4 | 0 | 1:* | 4 | - | 116 | 2 : | 0 | 1-4 | 1 | 1. | ** | 4 | 0 | . 2 | 23 | 33 | 16 | 21 | 0 | *. | - | -.- |
| 3D07M | 4 | -0 | 0 | 0 | -4 | 0 | 0 | 30 | 10 | 0 | -0 | 0 | 1 | 11 | 1 | 0 | 13 | 2 | . | 6 | 1 | 0 | 16 | 1 | 116 |
| 3D67M | 0 | -0 | 0 | 0 | -0 | 0 | 0 | 2 : | * | 0 | 3- | 0 | * | 16 | 1 | 0 | 22 | 3 | 10 | 3 | 2 | 0 | 16 | 0 | 111 |
| 31307M | 1 | 3. | 2 | 0 | -2 | 0 | 1 | 32 | 4 | 0 | -0 | 0 | 12 | 21 | 1 | 0 | 3- | 0 | 14 | 6 | 2 | 0 | 2- | 0 | 1-0 |
| 3D67M | 1 | -1 | 1 | 0 | -3 | 1 | 0 | 2: | * | 0 | 3- | 0 | 1 | : | 2 | 0 | 11 | 2 | 10 | 3 | 3 | 0 | 1* | 1 | 10- |
| HyurlP Tytal | . | 1*0 | 3 | 0 | 142 | 1 | 1 | 11: | 2. | 0 |  | 0 | 20 | 66 | 6 | 0 | : 0 | 4 | -* | 1* | : | 0 | 40 | 2 | -40 |
| - ID07M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| HyurlP Tytal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Tytal | 24 | 321 | 10 | 0 | 36: | : | 6 |  | 64 | 0 | 2. * | 1 | 3. | 121 | 12 | 0 | 142 | 30 | 4. | 31 | 2. | 0 | 13. | * | *6 |
| \% ) YYryach | 48\% : | : . 44\% | 28 \% 0\% |  | A |  | 184\% 4 | 4. 81\% | 1. $8 \% 0$ |  | A |  | 2284\% | 408\% | 48\% 0\% | 0\% | A |  | 6*8\% | 228\% | $208 \% 0 \%$ | \% | A | A | A |
| \% Tytal | 28 \% | 338\% | 18\%\% 0\% | \% 3 | 3481\% |  | 0¢\% 2 | 2-8\% | 68 \% 0 | 0\% 30 | 3084\% | A | - 8\% | 128\% | 12\% 0\% | 0\% 1 | 148 \% |  | : 8\% | 38\% | 38\% 0\% | \% 1- | 1-8\% |  | A |
| Lights | 24 | 313 | 10 | 0 | 360 |  | 6 | 230 | 66 | 0 | 2.0 | A | 3: | 116 | 11 | 0 | 1*- | A | 4: | 2. | $2:$ | 0 | 136 |  | 3. |
| \% Lights | 100\% . | . 46\% 1 | 100\% 0\% | \% . | 48 \% |  | 100\% . | . : 8\% . | . $8 \% 0$ | 0\%. | : 8\% |  | $48 \%$. | . $68 \%$ | . 184\% 0\% | 0\%.6 | 68\% |  | . 1 \%\% . | . $38 \%$ | *8*\% 0\% | \% . | 481\% |  | 48\% |
| ) rticulated Trucks and SingleAUnit Trucks | 0 | 4 | 0 | 0 | 4 | A | A 0 | - | 1 | 0 | 6 | A | 0 | - | 0 | 0 | - | A | 0 | 2 | 0 | 0 | 2 | A | 1: |
| \% ) rticulated Trucks and SingleAUnit Trucks | 0\% | 28\% | 0\% 0\% | \% | 28\% | A | - 0\% | 184\% | 18 \% 0 | 0\% | 181\% | A | 0\% | 38\% | 0\% 0\% | 0\% | 28\% | A | 0\% | *6\% | 0\% 0\% | \% | 18\% | A | $18 \%$ |
| Buses | 0 | 0 | 0 | 0 | 0 | A | 0 | 0 | 0 | 0 | 0 | A | A 1 | 2 | 0 | 0 | 3 |  | 1 | 0 | 0 | 0 | 1 | A | A |
| \% Buses | 0\% | 0\% | 0\% 0\% |  | 0\% | A | A 0\% | 0\% | 0\% 0 |  | 0\% | A | 28*\% | 184\% | 0\% 0\% | 0\% | 181\% | A | 18\% | 0\% | 0\% 0\% | \% | 08\% | A | 08\% |
| BicPcles yn o yad | 0 | 1 | 0 | 0 | 1 | A | 0 | 0 | 1 | 0 | 1 | A | 0 | 0 | 1 | 0 | 1 | A | 0 | 0 | 1 | 0 | 1 | A |  |
| \% BicPcles yn o yad | 0\% | 08\% | 0\% 0\% | \% | 08\% | A | - $0 \%$ | 0\% | $18 \% 0$ | 0\% | 08\% | A | 0\% | 0\% | : $8 \% 0 \%$ | 0\% | 08\%\% | A | 0\% | 0\% | 38\% 0\% | \% | 08\% | A | 08\% |
| 7edestrians | A | A | A | A | A |  | A | A | A | A | A | 1 | A | A A | A A | A | A | 2. | A |  | A | A | A | * |  |
| \% 7edestrians | A | A | A | A | A | 100\% | A | A | A | A | A | 100\% | A | A A | A A | A | A | *\%\% | A | A | A | A | A | 100\% | A |
| BicPcles yn CryssRalk | A | A | A | A | A |  | A | A | A | A | A | 0 | A | A A | A A | A | A | 1 | A | A | A | A | A | 0 |  |
| \% BicPcles yn CryssRalk | A | A | A | A | A | 0\% | A | A | A | A | A | 0\% | A | A | A A | A | A | 38\% | A | A | A | A | A | 0\% | A |

P7edestrians and BicPcles yn CryssRalk8LDLeft, o Do ight, TDThru, UDUAFurn

East Market Street-Mulberry Street Weekday S... - TMC
Wed Mar 1, 2023
Full Length (2 7MA 7M9
) ll Classes (Lights, ) rticulated Trucks and SingleAUnit Trucks, Buses, 7edestrians, BicPcles yn o yad, BicPcles yn CryssRalk9
) 11 Mywev ents
nh D10-2: 43, LycatiynD-18 241-- , A38 04-5.
[N] Mulberry St
Total: 211
7: 423 I ut: 86n


Wed Mar 1, 2023
AM AeaP k2(7: AM - 3(7: AM8-) CerawAeaP 1 Hb
u wCvasses LLights, u rticovated TrocPs and Singve-Unit TrocPs, Boses, Aedestrians, Bicycves H
RHad, Bicycues H CrHswavP8
u wMHOements
ID( 1072493, LHatiH( 71.629177, -93.6097: 6

| Leg <br> DirectiHh | bast MarPet St bast5Hnd |  |  |  |  |  | b ast MarPet St West5Hnd |  |  |  |  |  | Mov5erry St <br> EHth5Hnd |  |  |  |  |  | Mov5erry St SHth5Hnd |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R | U | u YY | Aedp | L | T | R | U | u YY |  | L | T | R | U | u YY | Aedp | L | T | R | U | u YY | Aedp |  |
| 2023-03-01 2(7: AM | 1 | 73 | 1 | 0 | 7: | 3 | 2 | 30 | 11 | 0 | 73 | 0 | 10 | 26 | 7 | 0 | 73 | 22 | 4 | : | * | 0 | 16 | 2 | 1:0 |
| 3(00AM | 9 | 70 | 0 | 0 | 79 | 0 | 0 | 30 | 10 | 0 | 70 | 0 | 1 | 11 | 1 | 0 | 13 | 2 | 6 | : | 1 | 0 | 1: | 1 | 11: |
| 3(1: AM | 0 | 70 | 0 | 0 | 70 | 0 | 0 | 24 | * | 0 | 37 | 0 | * | 1: | 1 | 0 | 22 | 3 | 10 | 3 | 2 | 0 | 1: | 0 | 111 |
| 3(30AM | 1 | 36 | 2 | 0 | 72 | 0 | 1 | 32 | 9 | 0 | 70 | 0 | 12 | 21 | 1 | 0 | 37 | 0 | 19 | : | 2 | 0 | 27 | 0 | 170 |
| THav | 6 | 1*2 | 3 | 0 | 197 | 3 | 3 | 120 | 37 | 0 | 1:9 | 0 | 26 | 9* | 9 | 0 | 112 | 29 | 77 | 14 | 11 | 0 | 93 | 3 | :1* |
| \% u YYrHach | : .2\% 6 | 63.1\% | 1.9\% 0\% |  | - |  | 1.6\% | 9*.7\% | 21.9\% 0 |  | - |  | 2: .6\% | *9.6\% | *.3\% 0\% |  | - |  | *0.3\% | 27.9\% | 1:.1\% 0 | \% |  | - | - |
| \% THav | 1.9\% 3 | 31.7\% | 0.*\% 0\% | \% | 33.9\% | - | 0.*\% | 23.3\% | *.*\% 0 | \% 3 | 30.7\% |  | : .*\% | 17.9\% | 1.7\% 0\% | \% | 21.9\% |  | 4.: \% | 3.: \% | 2.1\% 0\% | \% 17 | 17.1\% |  | - |
| Al F | 0.321 | 0.6720 | 0.39: | - | 0.62* |  | 0.39: | 0.634 | 0.42: | - 0 | 0.626 |  | 0.*07 | 0.*: | 0.39: | - | 0.*7: |  | 0.*79 | 0.600 | 0.: 00 | - 0 | 0.9: 0 |  | 0.4*9 |
| Lights | 6 | 1: * | 3 | 0 | 1*4 | - | 3 | 120 | 32 | 0 | 1: : |  | 24 | 93 | * | 0 | 109 |  | 73 | 14 | 10 | 0 | 91 | - | :01 |
| \% Lights | 100\% 6 | 6*.3\% 1 | 100\% 0\% | \% 6 | 6**\% |  | 100\% | 100\% | 67.1\% 0 | \% 6 | 64.9\% |  | 6*.*\% 6 | 6*.1\% | 4: .9\% 0\% | \% | 6: .: \% |  | 69.9\% | 100\% | 60.6\% 0 | \% 69 | 69.3\% |  | 69.1\% |
| u rticovated TrocPs and Singe-Unit TrocPs | 0 | * | 0 | 0 | * |  | 0 | 0 | 1 | 0 | 1 |  | 0 | 1 | 0 | 0 | 1 |  | 0 | 0 | 0 | 0 | 0 | - | 4 |
| \% u rticovated TrocPs and Singve-Unit TrocPs | 0\% | 3.9\% | 0\% 0\% | \% | 3.7\% | - | 0\% | 0\% | 2.6\% 0 |  | 0.*\% |  | 0\% | 1.3\% | 0\% 0\% |  | 0.6\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 1.*\% |
| Boses | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |  | 1 | 2 | 0 | 0 | 3 |  | 1 | 0 | 0 | 0 | 1 | - | 7 |
| \% Boses | 0\% | 0\% | 0\% 0\% |  | 0\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 3.7\% | 2.*\% | 0\% 0\% | \% | 2.9\% |  | 2.3\% | 0\% | 0\% 0 | \%\% | 1.7\% | - | 0.4\% |
| Bicycves H RHad | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 1 | 0 | 1 |  | 0 | 0 | 1 | 0 | 1 |  | 0 | 0 | 1 | 0 | 1 | - | 3 |
| \% Bicycues H RHad | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 2.6\% 0 | \% | 0.*\% |  | 0\% | 0\% | 17.3\% 0\% |  | 0.6\% | - | 0\% | 0\% | 6.1\% 0\% | \% | 1.7\% | - | 0.*\% |
| Aedestrians | - | - | - | - | - | 3 | - | - | - | - | - | 0 | - | - | - | - | - | 2* | - | - | - | - | - | 3 |  |
| \% Aedestrians | - | - | - | - |  | 100\% |  | - | - | - | - |  | - | - | - | - | - 6 | 6*.3\% | - | - | - | - |  | 100\% |  |
| Bicycles H CrHswavP | - | - | - | - | - |  | - | - | - | - | - | 0 | - | - | - | - | - | 1 | - | - | - | - | - | 0 |  |
| \% Bicycres H CrHswavP | - | - | - | - | - | 0\% |  | - | - | - | - | - | - | - | - | - | - | 3.9\% | - | - | - | - | - | 0\% | - |

${ }^{\mathrm{P}}$ Aedestrians and Bicycves H CrHsswavP. L( Left, R( Right, T( Thro, U( U-Torn

East Market Street-Mulberry Street Weekday S... - TMC
Wed Mar 1, 2023
AM AeaP k2(7: AM - 3(7: AM8- ) OerawAeaPl Hbr
u wCvasses KLights, u rticovated TrocPs and Singve-Unit TrocPs, Boses, Aedestrians, Bicycves H RHad, Bicycves H CrHsswavP8
u wMHOements
ID( 10724. 3, LHcatiH( 7152. 177, -. 350. 7: 5
ArHOded by( CreightH Manning
Engineering, LLA
2 Winners Circue, u bany, NY, 1220: , US


I ut: $80 \quad$ $\nabla: 228$
Total: 240
[S] Mulberry St

East Market Street-N Parsonage Street Weekda... - TMC
Wed Mar 1, 2023
Full Length (2 7MA 7M9
) ll Classes (Lights, ) rticulated Trucks and SingleAUnit Trucks, Buses, 7edestrians, BicPcles yn o yad, BicPcles yn CryssRalk9
) ll Mywev ents
nh D10-2: 41, LycatiynD-1842. 22: , A 3840652

7rywided bPDCreightyn Manning Engineering, LL7 2 Winners Circle,
) lbanP, NY, 12206, US

| Leg <br> I irectiyn | East Market St <br> Eastbyund |  |  |  |  |  | East Market St <br> Westbyund |  |  |  |  |  | N 7arsynage St <br> Nyrthbyund |  | N 7arsynage St <br> Syuthbyund |  |  |  |  |  | mt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tive | L | T | o |  | ) pp | 7ed* | L | T | o |  | ) pp | 7ed* | ) pp | 7ed* | L | T | o | U | ) pp | 7ed* |  |
| 2023A3A01 2D07M | 3 | 3. | : | 0 | -: | 0 | - | 30 | 3 | 0 | 3. | 0 | 0 | 0 | 2 | 2 | 0 | 0 | - | 0 | : 4 |
| 2D67M | 1 | 32 | 12 | 0 | -6 | 0 | 12 | -3 | 3 | 0 | 6 : | 0 | 0 | 0 | 1 | - | 2 | 0 | . | 0 | 110 |
| 2[307M | 1 | -2 | 1- | 0 | 6. | 0 | 4 | 24 | 1 | 0 |  | 0 | 0 | 0 | 1 | 6 | 1 | 0 | - | 1 | 103 |
| 2B67M | 1 | 36 | 11 | 0 | -. | 6 | 5 | -2 | 3 | 0 | 61 | 6 | 0 | : | 0 | 6 | 0 | 0 | 6 | 1 | 103 |
| HyurlP Tytal | 5 | 1-5 | -6 | 0 | 14. | 6 | 31 | 1-- | 10 | 0 | 1: 6 | 6 | 0 | : | - | 15 | 3 | 0 | 23 | 2 | -06 |
| 3D07M | 0 | -0 | 12 | 0 | 62 | 1 | 6 | 3: | 3 | 0 | -5 | 2 | 0 | 1 | 3 | 5 | 0 | 0 | 4 | 1 | 10. |
| 3D67M | 0 | -1 | 4 | 0 | 60 | 1 | . | 33 | 2 | 0 | -2 | 0 | 0 | 1 | - | 10 | 0 | 0 | 1- | 0 | 105 |
| 3[307M | 2 | -- | 10 | 0 | 65 | 1 | 5 | -1 | 3 | 0 |  | 2 | 0 | 1 | 5 | 1 | 0 | 0 | . | 0 | 113 |
| 3D67M | 0 | -2 | 10 | 0 | 62 | 0 | 5 | 35 | - | 0 |  | 0 | 0 | 1 | 0 | - | 0 | 0 | - | 1 | 102 |
| HyurlP Tytal | 2 | 15. | -1 | 0 | 210 | 3 | $2-$ | 1-: | 12 | 0 | 1: - | - | 0 | - | 13 | 21 | 0 | 0 | 3- | 2 | -2: |
| - D007M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| HyurlP Tytal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Tytal | : | 313 | : 5 | 0 | -0. | : | 66 | 243 | 22 | 0 | 3.0 | 4 | 0 | 12 | 1. | 3. | 3 | 0 | 6. | - | :3- |
| \% ) ppryach | 280\% | 584\% 2 | 181\% 0 | \% | A | A A | 1-8\% | 48\% | 6\%\% 0 | \% | A | A | A |  | 248 \% | -84\% | 68\% 0 | \% | A | A | A |
| \% Tytal | 18\% | 3. 8\% 1 | 108\% 0 | \% - : | : 8 \% | A | 56\% | 3681\% | 28\% 0 | \% -- | -8\% | A | 0\% | A | 28\% | -8\% | 08\% 0 |  | 58 \% | A | A |
| Lights | : | 305 | : 3 |  | 34. | A | - -4 | 2: : | 22 | 0 |  | A | 0 | A | 15 | 3. | 3 | 0 | 65 | A | : 12 |
| \% Lights | 100\% | 4. 8 \% 4 | 458\% 0 | \% 4. | . $6 \%$ |  | : 481\% 4 | 4: $8 \% 1$ | 100\% 0 | \% 4. | .8\% | A | A | A | 4-81\% | 100\% 1 | 100\% 0 | \% 4 | 4: 82\% |  | 4. $8 \%$ |
| ) rticulated Trucks and SingleAUnit Trucks | 0 | 5 | 2 | 0 | : | A | 1 | 6 | 0 | 0 | 5 | A | 0 | A | 1 | 0 | 0 | 0 | 1 | A | 16 |
| \% ) rticulated Trucks and SingleA Unit Trucks | 0\% | 184\% | 28\% 0 | \% | 28\% | A | 18 \% | 18 \% | 0\% 0 | \% | 18\% | A | A | A | 684\% | 0\% | 0\% 0 |  | $18 \%$ | A | 18 \% |
| Buses | 0 | 0 | 1 | 0 | 1 | A | 6 | 0 | 0 | 0 | 6 | A | 0 | A | 0 | 0 | 0 | 0 | 0 | A | 5 |
| \% Buses | 0\% | 0\% | 18\% 0 | \% 0 | 08\% | A | 481\% | 0\% | 0\% 0 | \% | 18\% | A | A | A | 0\% | 0\% | 0\% 0 |  | 0\% | A | $08 \%$ |
| BicPcles yn o yad | 0 | 1 | 0 | 0 | 1 | A | - 0 | 0 | 0 | 0 | 0 | A | 0 | A | 0 | 0 | 0 | 0 | 0 | A | 1 |
| \% BicPcles yn o yad |  | 08\% | 0\% 0 | \% 0 | 08\% | A | 0\% | 0\% | 0\% 0 |  | 0\% | A | A | A | 0\% | 0\% | 0\% 0 |  | 0\% | A | 081\% |
| 7edestrians | A | A | A | A | A | : | A | A | A | A | A | 4 | A | 12 | A | A | A | A | A | - |  |
| \% 7edestrians | A | A | A | A | A | 100\% | A | A | A | A |  | 100\% |  | 100\% | A | A | A | A |  | 100\% | A |
| BicPcles yn CryssRalk | A | A | A | A | A | 0 | A | A | A | A | A | 0 | A | 0 | A | A | A | A | A | 0 |  |
| \% BicPcles yn CryssRalk | A | A | A | A | A | 0\% | A | A | A |  | A | 0\% | A | 0\% | A | A | A | A | A | 0\% | A |

[^9]Wed Mar 1, 2023
Full Length (2 7MA 7M9
) ll Classes (Lights, ) rticulated Trucks and SingleAUnit Trucks, Buses, 7edestrians, BicPcles yn o yad, BicPcles yn CryssRalk9
) ll Mywev ents
nh D10-2: 41, LycatiynD-1842. 22: , A 3840652
[N] N Parsonage St
Total: 75
1n: 0543 t : 98
のำ ก ก


4 3t: 257 1n: 8
Total: 257
[S] N Parsonage St

East Market Street-N Parsonage Street Weekda... - TMC
Wed Mar 1, 2023
AM AeaP k2(7: AM - 3(7: AM8- ) OerawAeaP l Hr
u wCvasses Lights, u rticovated TrocPs and Singve-Unit TrocPs, Boses, Aedestrians, Bicycves
H RHad, Bicycyes H CrHsswavP8
u wMHOements
ID( 1072491, LHatiH( 71.926224, -63.90: 52

ArHOded by( CreightH Manning Engineering, LLA 2 Winners Circle, u bany, NY, 1220: , US

| Leg <br> DirectiH | East MarPet St <br> EastbЊnd |  |  |  |  |  | East MarPet St <br> WestbHond |  |  |  |  |  | N AarsHage St <br> NHthbHnd |  | $\begin{aligned} & \text { N AarsHage St } \\ & \text { SHthbHod } \end{aligned}$ |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R | U | upp | Aed* | L | T | R | U | u pp | Aed* | u pp | Aed* | L | T |  |  | u pp | Aed* |  |
| 2023-03-01 2(7: AM | 1 | 3: | 11 | 0 | 76 | : | 5 | 72 | 3 | 0 | : 1 | : | 0 | 4 | 0 | : | 0 | 0 | : | 1 | 103 |
| 3 (00AM | 0 | 70 | 12 | 0 | : 2 | 1 | : | 34 | 3 | 0 | 75 | 2 | 0 | 1 | 3 | 5 | 0 | 0 | 9 | 1 | 106 |
| 3(1: AM | 0 | 71 | 9 | 0 | : 0 | 1 | 6 | 33 | 2 | 0 | 72 | 0 | 0 | 1 | 7 | 10 | 0 | 0 | 17 | 0 | 105 |
| 3(30AM | 2 | 77 | 10 | 0 | : 5 | 1 | 5 | 71 | 3 | 0 | : 0 | 2 | 0 | 1 | 5 | 1 | 0 | 0 | 6 | 0 | 113 |
| THav | 3 | 150 | 72 | 0 | 20: | 4 | 27 | 1:7 | 11 | 0 | 149 | 9 | 0 | 11 | 13 | 22 | 0 | 0 | 3: | 2 | 729 |
| \% u pprHach | 1.: \% 6 | 64.0\% 2 | 20.: \% 0\% |  | - | - | 12.6\% | 41.: \% | .4\% 0\% |  | - | - | - |  | 36.1\% 5 | 52.9\% | \% 0\% |  | - | - | - |
| \% THav | 0.6\% 3 | 36.3\% | 9.4\% 0\% | \% 76 | 6.4\% | - | : .5\% | 3: .9\% | 2.5\% 0\% | \% 7 | 7.1\% | - | 0\% |  | 3.0\% | : .1\% 0 | \% 0\% |  | 4.2\% | - |  |
| Al F | 0.36: | 0.909 | 0.46: | - 0 | 0.91: | - | 0.4: 6 | 0.9160 | . 916 | - 0 | 0.925 | - | - | - | 0.: 72 | 0.: 0 | - | - | 0.52: | - | 0.979 |
| Lights | 3 | 1: 5 | 39 | 0 | 194 | - | 22 | 1:3 | 11 | 0 | 145 | - | 0 | - | 12 | 22 | 0 | 0 | 37 | - | 714 |
| \% Lights | 100\% 9 | 96.: \% 9 | 92.9\% 0\% | \% 95 | 5.5\% |  | 91.6\% | 99.7\% | 00\% 0\% | \% 9 | 4.7\% | - | - | - | 92.3\% | 100\% 0 | \% 0\% | \% 9 | 6.1\% |  | 96.7\% |
| u rticovated TrocPs and Singe-Unit TrocPs | 0 | 7 | 2 | 0 | 5 | - | 0 | 1 | 0 | 0 | 1 | - | 0 | - | 1 | 0 | 0 | 0 | 1 | - | 4 |
| \% u rticovated TrocPs and Singve-Unit TrocPs | 0\% | 2.: \% | 7.4\% 0\% | \% | 2.9\% | - | 0\% | 0.5\% | 0\% 0\% | \% | 0.: \% | - | - | - | 6.6\% | 0\% 0 | \% 0\% |  | 2.9\% | - | 1.9\% |
| Boses | 0 | 0 | 1 | 0 | 1 | - | 2 | 0 | 0 | 0 | 2 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 3 |
| \% Boses | 0\% | 0\% | 2.7\% 0\% | \% | 0.: \% | - | 4.3\% | 0\% | 0\% 0\% | \% | 1.1\% | - | - | - | 0\% | 0\% 0 | \% 0\% |  | 0\% | - | 0.6\% |
| Bicycves H RHd | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 |
| \% Bicycves H RHad | 0\% | 0\% | 0\% 0\% | \% | 0\% | - | 0\% | 0\% | 0\% 0\% | \% | 0\% | - | - | - | 0\% | 0\% 0 | \% 0\% |  | 0\% | - | 0\% |
| Aedestrians | - | - | - | - | - | 4 | - | - | - | - | - | 9 | - | 11 | - | - | - | - | - | 2 |  |
| \% Aedestrians | - | - | - | - | -1 | 100\% | - | - | - | - | - | 100\% | - | 100\% | - | - | - | - | -1 | 100\% |  |
| Bicycves H CrHswavP | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | 0 | - | - | - | - | - | 0 |  |
| \% Bicycues H CrHswavP | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - | 0\% | - | - | - | - | - | 0\% |  |

*Aedestrians and Bicycues H CrHswavP. L( Left, R( Right, T( Thro, U( U-Torn
[N] N Parsonage St
Total: 75
On: 83 6 Ot: u7


6 Ot: 22 0n: 1
Total: 22
[S] N Parsonage St

South Street-N Parsonage St-S Parsonage St W... - TMC
Wed Mar 1, 2023
Full Length (2 7MA 7M9
) ll Classes (Lights, ) rticulated Trucks and SingleAUnit Trucks, Buses, 7edestrians, BicPcles yn o yad, BicPcles yn CryssRalk9
) ll Mywev ents
nh D10-2: 04, LycatiynD-18 24304, A 38 0661:

7rywided 5PDCreightyn Manning bngineering, LL7 2 Winners Circle,
) 15anP, EN, 12206, US

| Leg <br> I irectiyn | Syuth St bast5yund |  |  |  | Syuth St <br> West5yund |  |  |  |  | $\begin{array}{\|l\|} \hline \text { S 7arsynage St } \\ \text { Eyrth5yund } \\ \hline \end{array}$ |  |  |  |  | E 7arsynage St Syuth5yund |  |  |  |  | mt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tiv e | T | o U | ) YY |  | L | T |  | ) YY | 7edp | L | o | U | ) Y | 7edp | L | T | o | ) Y | 7edp |  |
| 2023A3A01 2D07M | . | 60 | 12 | 0 | 4 | 1 | 0 | . | 0 | 1* | . | 0 | 26 | 0 | 1 | 12 | 1 | 1- | 2 | 6* |
| 2D67M | 2 | 110 | 13 | 1 | : | 1 | 0 | 10 | 1 | 13 | 3 | 0 | 14 | 0 | 1 | 24 | 0 | 2. | 0 | 44 |
| 2[307M | 6 | 160 | 20 | 0 | 12 | 2 | 0 | 1- | * | 32 | 3. | 0 | 4: | 2 | 0 | 2. | 3 | 30 | 0 | 133 |
| 2B67M | 6 | 110 | 14 | 0 | 4 | - | 0 | 10 | 30 | 66 | 3* | 0 | : 3 | - | 0 | 23 | 0 | 23 | 3 | 1-2 |
| HyurlP Tytal | $1:$ | -2 0 | 41 | 1 | 33 | * | 0 | -1 | 3: | 11* | *6 | 0 | 203 | 4 | 2 | ** | - | :- | 6 | 3: : |
| 3D07M | - | 120 | 14 | 2 | . | 3 | 0 | 10 | . | 1* | 30 | 0 | -* | 0 | 1 | 22 | 0 | 23 | 2 | :. |
| 3D67M | 4 | 110 | 1. | 3 | 4 | 3 | 0 | : | 0 | 2. | 2. | 0 | 6- | 0 | 1 | 26 | 2 | 2* | 1 | 10* |
| 3 B 307 M | - | 40 | 10 | 1 | 6 | 3 | 0 | * | 2 | -: | 21 | 0 | . 0 | 0 | 0 | 16 | 2 | 1. | 1 | 106 |
| 3D67M | 3 | 60 | * | 1 | 6 | 3 | 0 | * | 0 | $1-$ | 1* | 0 | 32 | 0 | 0 | 1- | 2 | 14 | 0 | 4- |
| HyurlP Tytal | 1. | 3- 0 | 61 | . | 23 | 12 | 0 | 36 | : | 10* | : 4 | 0 | 20- | 0 | 2 | . 4 | 4 | *- | - | 3. - |
| Tytal | 34 | 40 | 112 | * | 64 | 20 | 0 | . 4 | -* | 224 | 1*1 | 0 | -0. | 4 | - | 14- | 10 | 1. * | : | $\ldots 3$ |
| \% ) YYryach | 3281\% 4 | 4. 8 \% 0\% | A |  | 38 \% 2 | 248\% 0\% |  | A | $A 6$ | 668\% - | - $6 \% 0$ |  | A | A | 28\% : | 281\% 6 | 684\% | A | A | A |
| \% Tytal | -8\% | : 8\% 0\% 1 | 1-8\% | A | . $8 \%$ | 2\%\% 0\% | \% : | : \%\%\% |  | 2: 8\% | 238 \% 0 | 0\% 6 | 628 \% | A | 0¢\% | 218\% 1 | 18\% 2 | 238\% | A | A |
| Lights | 33 | . 30 | 104 | A | 63 | 20 | 0 | . 3 | A | 221 | 1.1 | 0 | 3: 2 | A | 3 | 164 | 10 | 14: |  | . -0 |
| \% Lights | : 18 \% : | 481\% 0\% : | -84\% |  | - 84\% | 100\% 0\% | \% : | 481\% | A | : . 8\% : | : -8\% 0 | 0\% : | 48\% | A | . $68 \%$ : | 681\% 1 | 100\% : | : -8\% |  | : 68 \% |
| ) rticulated Trucks and SingleA Unit Trucks | 3 | 30 | 4 | A | 2 | 0 | 0 | 2 |  | 2 | 2 | 0 | - | A | 0 | 3 | 0 | 3 | A | 16 |
| \% ) rticulated Trucks and SingleA Unit Trucks | * $3 \%$ | 38 \% 0\% | 68\% | A | 38\% | 0\% 0\% | \% | 28\% | A | 08 \% | 181\% 0 | 0\% | 18\% | A | 0\% | 18\%\% | 0\% | 18 \% | A | 18 \% |
| Buses | 0 | $0 \quad 0$ | 0 | A | 1 | 0 | 0 | 1 | A | 3 | * | 0 | 11 | A | 0 | 6 | 0 | 6 | A | 1. |
| \% Buses | 0\% | 0\% 0\% | 0\% | A | 18*\% | 0\% 0\% | \% | 18\% | A | 18\% | -8\% 0 | 0\% | 28 \% | A | 0\% | 38\% | 0\% | 28*\% | A | 28\% |
| BicPcles yn o yad | 0 | $0 \quad 0$ | 0 | A | 0 | 0 | 0 | 0 | A | 0 | 0 | 0 | 0 | A | 1 | 0 | 0 | 1 | A | 1 |
| \% BicPcles yn o yad | 0\% | 0\% 0\% | 0\% | A | 0\% | 0\% 0\% | \% | 0\% | A | 0\% | 0\% 0 |  | 0\% |  | 268\% | 0\% | 0\% | 08\% | A | 081\% |
| 7edestrians | A | A A | A | * | A | A | A | A | -. | A | A | A | A | 4 | A | A | A | . | A |  |
| \% 7edestrians | A | A A | A | 100\% | A | A | A | A: | . 8 \% | A | A | A | A | 100\% | A | A | A | A | 100\% | A |
| BicPcles yn CryssRalk | A | A A | A | 0 | A | A | A | A | 1 | A | A | A | A | 0 | A | A | A | A | 0 |  |
| \% BicPcles yn CryssRalk | A | A A | A | 0\% | A | A | A | A | 281\% | A | A | A | A | 0\% | A | A | A |  | ( $0 \%$ | A |

P7edestrians and BicPcles yn CryssRalk8LDLeft, o Do ight, TDThru, UDUAFurn
[N] N Parsonage St
Total: 283
9: 283 Out: 6


Out: 470
9: 168
Total: 865
[S] S Parsonage St

South Street-N Parsonage St-S Parsonage St W... - TMC
Wed Mar 1, 2023
AM AeaP k2(30 AM 73(30 AM: 7-8era)) AeaP Ovl r
H)) o aauueu KCsLi gı, Hrghl )aged t rl hPu acd TscL)e7n csgt rl hPu, Sl ueu, Aedeugsacu, S shUh)eu vc Bvad, S shCh)eu vc o rvury a)P:
H)) Mv8eR ecgı
mi( 10I 2D04, Cvhagvc (I 19D24304, 7. 39D0661D

Arv8sded 5U( o resLi gvc MaccscL bcLsceerscL, CCA 2 Wscceru o srh)e,
H)5acU, EN, 12206, n T

| CeL msrehgivc | Tvlg Tg b augsvl cd |  |  | Tvlg Tg Weuǧvl cd |  |  |  |  | T AaruvcaLe Tg Evrg 5vl cd |  |  |  |  | E AaruvcaLe Tg Tvl g 5vl cd |  |  |  |  | vg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| t sRe | t | B n | HYY Aedp | C | t n |  | HYY | Aedp | C | B | n | HYY | Aedp | C | t | B | HYY | Aedp |  |
| 2023703701 2(30AM | 6 | 160 | $20 \quad 0$ | 12 | 2 | 0 | 1I | * | 32 | 3. | 0 | 4D | 2 | 0 | 2. | 3 | 30 | 0 | 133 |
| 2(I 6AM | 6 | 110 | 140 | 4 | I | 0 | 10 | 30 | 66 | 3* | 0 | DB | I | 0 | 23 | 0 | 23 | 3 | 112 |
| 3(00AM | I | 120 | 14 | . | 3 | 0 | 10 | . | 1* | 30 | 0 | I* | 0 | 1 | 22 | 0 | 23 | 2 | D |
| 3(16AM | 4 | 110 | 1. 3 | 4 | 3 | 0 | D | 0 | 2. | 2. | 0 | 6 I | 0 | 1 | 26 | 2 | 2* | 1 | 10* |
| t vg\% | 20 | ID 0 | 4D 6 | 31 | 12 | 0 | 13 | I 6 | 132 | 132 | 0 | 24I | 4 | 2 | D | 6 | 10I | 4 | I * 0 |
| \% HYYrvahi | 2D0\% . | 190\% 0\% | 7 | 291\% 2 | 2. $\mathrm{S} \% 0 \%$ |  | 7 | 7 | 6090\% 6 | 609\%\% 0\% | \% | 7 | 7 | 19D\% | DB3\% | 9*\% | 7 | 7 | 7 |
| \% t vg\%) | I $9 \% 1$ | 109\% 0\% 1 | I9\% | 496\% | 29\%\% 0\% |  | D8\% | 7 | 2. $96 \% 2$ | 2. $96 \% 0$ | \% 6 | 690\% | 7 | 09 \% 2 | 209\% | 90\% 2 | 219 \% | 7 | 7 |
| AOF | $09 * 33$ | 09*1. 7 | 09*43 | 09I 4 | 0960 |  | 09 4* | 7 | 0400 | 0\%** | 70 | 0910 | 7 | 0960 | $09^{*} \mathrm{D}^{*} 0$ | 9 1. | 09*6* | 7 | 09*I3 |
| CSLigı | 1* | I4 0 | 4I 7 | 2D | 12 | 0 | I1 | 7 | 12D | 124 | 0 | 266 | 7 | 1 | DB | 6 | DD | 7 | I6D |
| \% CSLi gr | Dosp\% | DB9\% 0\% | 29\%\% 7 | DB6\%\% | 100\% 0\% | \% D | D69\% | 7 | D 9 \% L | D696\% 0\% | \% D | 494\% | 7 | 6090\% | D69D\% 1 | 100\% | D69\% | 7 | D69\% |
| Hrghl laged t rl hPuacd TscL)e7 n csgt rl hPu | 2 | 30 | $6 \quad 7$ | 1 | 0 | 0 | 1 | 7 | 1 | 0 | 0 | 1 | 7 | 0 | 1 | 0 | 1 | 7 | * |
| \% Hrghl )aged t rl hPuacd TscL)e7 n csgt rl hPu | 1090\% | 491\% 0\% | . $\Phi \% \quad 7$ | 39\% | 0\% 0\% | \% | 29\%\% | 7 | 09\%\% | 0\% 0\% |  | 09\% | 7 | 0\% | 190\% | 0\% | 190\% | 7 | 19 \% |
| Sl ueu | 0 | $0 \quad 0$ | $0 \quad 7$ | 1 | 0 | 0 | 1 | 7 | 2 | 4 | 0 | * | 7 | 0 | 3 | 0 | 3 | 7 | 12 |
| \% Sl ueu | 0\% | 0\% 0\% | 0\% 7 | 39\% | 0\% 0\% | \% | 29\% | 7 | 196\% | I ¢\% 0\% | \% | 39\%\% | 7 | 0\% | 391\% | 0\% | 29\%\% | 7 | 296\% |
| SshUh)euvc Bvad | 0 | $0 \quad 0$ | $0 \quad 7$ | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 7 | 1 | 0 | 0 | 1 | 7 | 1 |
| \% SshUh)euvc Bvad | 0\% | 0\% 0\% | 0\% 7 | 0\% | 0\% 0\% | \% | 0\% | 7 | 0\% | 0\% 0\% |  | 0\% | 7 | 6090\% | 0\% | 0\% | 190\% | 7 | 0¢\% |
| Aedeugsacu | 7 | $7 \quad 7$ | 76 | 7 | 7 | 7 | 7 | II | 7 | 7 | 7 | 7 | 4 | 7 | 7 | 7 | 7 | 4 |  |
| \% Aedeugsacu | 7 | $7 \quad 7$ | 7100\% | 7 | 7 | 7 | 7 | D 9*\% | 7 | 7 | 7 |  | 00\% | 7 | 7 | 7 | 7 | 00\% | 7 |
| S shUh)euvc o rvury a)P | 7 | $7 \quad 7$ | $7 \quad 0$ | 7 | 7 | 7 | 7 | 1 | 7 | 7 | 7 | 7 | 0 | 7 | 7 | 7 | 7 | 0 |  |
| \% S shUh)eu vc orvury a)P | 7 | $7 \quad 7$ | 7 0\% | 7 | 7 | 7 | 7 | 29\% | 7 | 7 | 7 | 7 | 0\% | 7 | 7 | 7 | 7 | 0\% | 7 |

PAedeugsacu acd S shUh)eu vc orvury a)P9C( Cefg B(BsLi g t ( t i rl , n ( n 7t lrc

PM Peak (2:30 PM - 3:30 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042906, Location: 41.926306, -73.905519
[N] N Parsonage St
Total: 283
ln: 2830 ut: 8


0 ut: 255
1n: 493
Total: 332
[S] S Parsonage St

## East Market Street-Mulberry Street Weekday PM - TMC

Wed Mar 1, 2023
Full Length (7 AM-9 AM)
Cll s lai iei (Lqghti, CrtcTulated kruTSi and Ungle-Bnd kruTSi, Puiei, Aedeitrcani, PctyTlei on
Road, P clyTlei on s roiiwalS)
Cll Movementi
ID: 1072489, LoTatcon: 71.628177, -83.608756
Aroveded by: s recghton Mannog Engneerag, LLA 2 Wanneri s aTle Clbany, NY, 12205, BU

| Leg <br> DceTton | Eait MarSet Ut <br> Eai tbound |  |  |  |  |  | Eait MarSet Ut Weitbound |  |  |  |  |  | Mulberry Ut Northbound |  |  |  |  |  | Mulberry Ut Uouthbound |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kame | L | k | R |  | Срр | Aed* | L | k | R | B | Срр | Aed* | L | k | R | B | Срр | Aed* | L | k | R | B |  | Aed* |  |
| 2023-03-01 7:00AM | 1 | 34 | 0 | 0 | 36 | 1 | 0 | 34 | 4 | 0 | 79 | 0 | 9 | 4 | 1 | 0 | 15 | 0 | 4 | 3 | 9 | 0 | 18 | 3 | 118 |
| 7:15AM | 9 | 77 | 0 | 0 | 50 | 2 | 0 | 33 | 8 | 0 | 70 | 0 | 9 | 0 | 3 | 0 | 6 | 1 | 7 | 0 | 9 | 0 | 10 | 2 | 106 |
| 7:30AM | 3 | 75 | 0 | 0 | 74 | 0 | 2 | 34 | 5 | 0 | 75 | 0 | 5 | 4 | 0 | 0 | 13 | 0 | 8 | 2 | 0 | 0 | 6 | 1 | 115 |
| 7:75AM | 7 | 32 | 1 | 0 | 38 | 0 | 1 | 39 | 5 | 0 | 72 | 0 | 7 | 7 | 1 | 0 | 6 | 0 | 4 | 5 | 7 | 0 | 18 | 0 | 105 |
| Hourly kotal | 17 | 156 | 1 | 0 | 187 | 3 | 3 | 175 | 25 | 0 | 183 | 0 | 21 | 20 | 5 | 0 | 79 | 1 | 28 | 10 | 19 | 0 | 53 | 9 | 779 |
| 5:00AM | 5 | 51 | 3 | 0 | 56 | 0 | 2 | 32 | 2 | 0 | 39 | 1 | 4 | 10 | 2 | 0 | 20 | 1 | 10 | 0 | 2 | 0 | 12 | 1 | 128 |
| 5:15AM | 7 | 39 | 1 | 0 | 71 | 0 | 1 | 26 | 6 | 0 | 36 | 0 | 4 | 7 | 1 | 0 | 13 | 1 | 4 | 1 | 5 | 0 | 17 | 1 | 108 |
| 5:30AM | 0 |  | 2 | 0 | 30 | 0 | 1 | 20 | 2 | 0 |  | 0 | 7 | 9 | 3 | 0 | 13 | 1 | 4 | 5 | 5 | 0 | 14 | 0 | 47 |
| 5:75AM | 0 | 28 | 0 | 0 | 28 | 1 | 2 | 26 | 9 | 0 | 38 | 0 | 5 | 3 | 0 | 0 | 4 | 3 | 2 | 9 | 7 | 0 | 12 | 0 | 47 |
| Hourly kotal | 6 | 172 | 9 | 0 | 158 | 1 | 9 | 110 |  | 0 | 135 | 1 | 25 | 23 | 9 | 0 | 57 | 9 | 24 | 12 | 19 | 0 | 59 | 2 | 702 |
| kotal | 23 | 301 | 8 | 0 | 331 | 7 | 6 | 255 | 77 | 0 | 304 | 1 | 79 | 73 | 11 | 0 | 100 | 8 | 55 | 22 | 32 | 0 | 106 | 4 | 474 |
| \% CpproaTh | 9.6\% | 60.6\% | 2.1\% 0 |  | - |  | 2.6\% | 42.4\% | 17.3\% 0 |  | - |  | 79.0\% | 73.0\% | 11.0\% 0\% |  | - |  | 50.5\% | 20.2\% | 26.7\% 0 |  |  |  | - |
| \% kotal | 2.8\% | 35.5\% | 0.4\% 0 | \% | 36.0\% |  | 1.1\% | 30.1\% | 5.2\% 0 | 0\% | 39.3\% |  | 5.7\% | 5.1\% | 1.3\% 0\% | 0\% | 11.4\% |  | 9.5\% | 2.9\% | 3.4\% 0 | \% 1 | 2.6\% |  | - |
| Leghti | 22 | 269 | 8 | 0 | 325 |  | 6 | 276 | 77 | 0 | 302 |  | 75 | 73 | 11 | 0 | 66 |  | 57 | 22 | 31 | 0 | 108 |  | 433 |
| \% Leghti | 65.8\% | 64.3\% | 100\% 0 | \% 6 | 64.2\% |  | 100\% | 68.9\% | 100\% 0 | 0\% | 64.1\% |  | 68.4\% | 100\% | 100\% 0\% | 0\% | 66.0\% |  | 64.2\% | 100\% | 69.6\% 0 | \% | 4.2\% |  | 64.2\% |
| Crtctulated kruTSi and Ungle-Bna kruTSi | 1 | 7 | 0 | 0 | 5 | - | 0 | 5 | 0 | 0 | 5 | - | 1 | 0 | 0 | 0 | 1 | - | 0 | 0 | 1 | 0 | 1 | - | 12 |
| \% Crtctulated kruTSi and Ungle-Bna kruTSi | 7.3\% | 1.3\% | 0\% 0 |  | 1.5\% | - | 0\% | 2.0\% | 0\% 0 |  | 1.9\% | - | 2.2\% | 0\% | 0\% 0\% |  | 1.0\% | - | 0\% | 0\% | 3.1\% 0 |  | 0.6\% | - | 1.7\% |
| Puiei | 0 | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |  | 1 | 0 | 0 | 0 | 1 |  | 2 |
| \% Puiei | 0\% | 0.3\% | 0\% 0 | \%\% | 0.3\% |  | 0\% | 0\% | 0\% 0 |  | 0\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 1.4\% | 0\% | 0\% 0 |  | 0.6\% |  | 0.2\% |
| PclyTlei on Road | 0 | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |  | 1 |
| \% Pctyllei on Road | 0\% | 0\% | 0\% 0 |  | 0\% |  | 0\% | 0.7\% | 0\% 0 |  | 0.3\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 0\% 0 |  | 0\% |  | 0.1\% |
| Aedeitrani | - | - | - | - | - | 7 | - | - | - | - | - | 1 | - | - | - | - | - | 8 | - | - | - | - | - | 4 |  |
| \% Aedeitrani | - | - | - | - |  | 100\% | - | - | - | - |  | 100\% | - | - | - | - | - | 100\% | - | - | - | - |  | 100\% | - |
| P clyTlei on s roiiwals | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 |  |
| \% P clyTlei on s roiiwals | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - | - | - | - | - | 0\% | - |

*Aedei trcani and P clyTlei on s roiiwalS. L: Left, R: Rgght, k: khru, B: B-kurn

Wed Mar 1, 2023
Full Length (7 AM-9 AM)
Cll s laiiei (Lgghti, CrtcTulated kruTSi and Ungle-Bna kruTSi, Puiei, Aedeitrcani, PcTyTlei on Road, P ctyTlei on s roiiwalS)
Cll Movementi
ID: 1072489, LoTatcon: 71.628177, -83.608756
[N] Mulberry St
Total: 218
9: 178 nut: 117

nut: 40 B: 177
Total: 140
[S] Mulberry St

East Market Street-Mulberry Street Weekday PM - TMC
Wed Mar 1, 2023
AM AeaP k(71: AM - : 71: AM8-) OerawAeaPl Hor
u wCvasses Lights, u rticovated TrocPs and Singve-Unit TrocPs, Boses, Aedestrians, Bicycres H
RHad, Bicycues Hh CrHsswavP8 u wMHDements
ID710(249. , LHcatiH7(16291) ( , -936509( : 5
ArHOded by7CreightH Manning Engineering, LLA 2 Winners Circre, u bany, NY, 1220: , US

| Leg <br> DirectiH | East MarPet St Eastbやnd |  |  |  |  |  | East MarPet St WestbHond |  |  |  |  |  | Morberry St NHthbHond |  |  |  |  |  | Morberry St SHthbHnd |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R U | U | u pp | Aed* | L | T | R | U | u pp | Aed* | L | T | R | U | upp | Aed* | L | T | R U | U |  | Aed* |  |
| 2023-03-01 ( 71: AM | . | ( | 0 | 0 | : 0 | 2 | 0 | 33 | 9 | 0 | (0 | 0 | . | 0 | 3 | 0 | 5 | 1 | ( | 0 | . 0 | 0 | 10 | 2 | 105 |
| ( 730AM | 3 | (: | 0 | 0 | (4 | 0 | 2 | 34 | : | 0 | (: | 0 | : | 4 | 0 | 0 | 13 | 0 | 9 | 2 | 0 | 0 | 5 | 1 | 11: |
| ( 7 : AM | ( | 32 | 1 | 0 | 39 | 0 | 1 | 3. | : | 0 | (2 | 0 | ( | ( | 1 | 0 | 5 | 0 | 4 | : | ( 0 | 0 | 19 | 0 | 10: |
| : 00AM | : | : 1 | 3 | 0 | : 5 | 0 | 2 | 32 | 2 | 0 | 3. | 1 | 4 | 10 | 2 | 0 | 20 | 1 | 10 | 0 | 2 | 0 | 12 | 1 | 129 |
| THav | 14 | 192 | ( | 0 | 15( | 2 | : | 135 | 15 | 0 | 1. 3 | 1 | 23 | 22 |  | 0 | :1 | 2 | 25 | 9 | 12 | 0 | (4 | ( | (:. |
| \% u pprłhch | 56\% | 44ө9\% | 261\% 0\% |  | - |  | 361\% | 4: $6 \% 1$ | 11®\% 0\% |  | - |  | (: 61\% | ( 361\% | 1164\% 0\% |  |  |  | 06\% 1 | 1(6\% | 2: 6\% 0\% |  | - |  |  |
| \% THav | 36\% | 39¢\%\% | 06\% 0\% | \% (2 | 26 \% |  | 161\% | $306 \%$ | ( (2\% 0\% | \% 3 | 3: $69 \%$ |  | : 6\% | ( $64 \%$ | 16\% 0\% | \% 1 | 116\% |  | . 6 \% | 16 \% | 26 \% 0\% | \% 1 | 106 \% |  |  |
| Al F | 0¢: 0 | 064(30 | 0633 | - 0 | 06422 |  | 06 2: | 061( | 0695 | - | 060. |  | $0 ¢ 15$ | 06:0 | 0600 | - | 0634 |  | 0ө92: | 06: 0 | 0600 | - | 0 O0. |  | 06454 |
| Lights | 19 | 1.5 | ( | 0 | 150 |  | : | 13( | 15 | 0 | 1:4 |  | 22 | 22 |  | 0 | : 0 |  | 25 | 9 | 11 | 0 | (9 |  | ( : |
| \% Lights | 5(6\% 5 | 546\% 1 | 100\% 0\% | \% 5 | 596\% |  | 100\% 5 | 5. 6 \% | 100\% 0\% | \% 5 | 5. $6 \%$ |  | 5: ө\% | 100\% | 100\% 0\% | \% 5 | 546\% |  | 100\% | 100\% | 51๒\% 0\% | \% 5 | 596\% |  | $596 \%$ |
| u rticovated TrocPs and Singe-Unit TrocPs | 1 | 3 | 0 | 0 | ( | - | 0 | : | 0 | 0 | : | - | 1 | 0 | 0 | 0 | 1 | - | 0 | 0 | 1 | 0 | 1 |  | 11 |
| \% u rticovated TrocPs and Singe-Unit TrocPs | : 6 \% | 19\%\% | 0\% 0\% |  | 261\% | - | 0\% | $36 \%$ | 0\% 0\% |  | 36\% |  | ( 6\% | 0\% | 0\% 0\% |  | 26\% | - | 0\% | 0\% | 46\% 0\% |  | 261\% |  | 26\% |
| Boses | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |  | 0 |
| \% Boses | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% |
| Bicycues H RHad | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |  | 0 |
| \% Bicycves H RHad | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% | 0\% 0\% |  | 0\% |  | 0\% |
| Aedestrians | - | - | - | - | - | 2 | - | - | - | - | - | 1 | - | - | - | - | - | 2 | - | - | - | - | - | ( |  |
| \% Aedestrians | - | - | - | - | - | 100\% | - | - | - | - | - | 100\% | - | - | - | - |  | 100\% | - | - | - | - |  | 100\% | - |
| Bicycres H CrHswavP | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 |  |
| \% Bicycres H CrHswavP | - | - | - | - | - |  | - | - | - | - | - |  | - | - | - | - | - |  | - | - | - | - | - | 0\% | - |

[^10]AM AeaP k (71: AM - : 71: AM8- ) OerawAeaP 1 Hor
u wCvasses KLights, u rticovated TrocPs and Singve-Unit TrocPs, Boses, Aedestrians, Bicycves H RHad, Bicycves H CrHsswavP8
u wMHOements
ID710(249. , LHatiH7(16291( ( , -93609) : 5

6 ut: 24 B: O2
Total: 48
[S] Mulberry St

Wed Mar 1, 2023
Full Length (7 AM-9 AM)
Cll s laiiei (Lgghti, Crtclulated kruTSi and Ungle-Bnat kruTSi, Puiei, Aedeitrani, P clyTlei on Road, P clyTlei on s roiiwalS)
Cll Movementi
ID: 1072442, LoTatcon: 718 29016, -538 05371

Aroveded by: s reghton Mannang Engaeermg, LLA 2 Wanneri s aTle, Clbany, NY, 12206, BU

| Leg <br> DreTtcon | Uouth Ut <br> Eaitbound |  |  |  | Uouth Ut Weitbound |  |  |  |  | Mulberry Ut Ubuthbound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kame | L k | B | Cpp | Aed* | k | R | B | Cpp | Aed* | L | R | B | Cpp | Aed* | Int |
| 2023-03-01 7:00AM | $0 \quad 5$ | 0 | 5 | 0 | 4 | 17 | 0 | 22 | 0 | 3 | 0 | 0 | 3 | 0 | 32 |
| 7:16AM | 712 | 0 | 19 | 0 | 4 | 5 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 31 |
| 7:30AM | 05 | 0 | 5 | 0 | 6 | 13 | 0 | 14 | 0 | 3 | 0 | 0 | 3 | 3 | 24 |
| 7:76AM | 06 | 1 | 9 | 0 | . | 13 | 0 | 22 | 0 | 6 | 0 | 0 | 6 | 0 | 33 |
| Hourly kotal | $7 \quad 31$ | 1 | 39 | 0 | 30 | 75 | 0 | 55 | 0 | 11 | 0 | 0 | 11 | 3 | 127 |
| 6:00AM | 210 | 0 | 12 | 0 | 5 | 17 | 0 | 21 | 0 | 1 | 2 | 0 | 3 | 1 | 39 |
| 6:16AM | 05 | 0 | 5 | 0 | 5 | 13 | 0 | 20 | 0 | 2 | 1 | 0 | 3 | 3 | 30 |
| 6:30AM | 111 | 0 | 12 | 0 | 6 | 12 | 0 | 15 | 0 | 6 | 1 | 0 | 9 | 3 | 36 |
| 6:76AM | $0 \quad 4$ | 0 | 4 | 0 | 7 | 6 | 0 | . | 0 | 2 | 1 | 0 | 3 | 0 | 20 |
| Hourly kotal | 339 | 0 | 3. | 0 | 23 | 77 | 0 | 95 | 0 | 10 | 6 | 0 | 16 | 5 | 121 |
| kotal | 595 | 1 | 56 | 0 | 63 | . 1 | 0 | 177 | 0 | 21 | 6 | 0 | 29 | 10 | 276 |
| \% CpproaTh | . $8 \%$ 4.8\% | 18\% | - | - | 39\%\% | 938\% | 0\% | - | - | 40\%\% | 1. $2 \%$ |  | - | - | - |
| \% kotal | 28 \% 258\% | 08\% | 308\% | - | 21ヵ\% | 3581\% | 0\% | 648\% | - | 49\% | 28\% | 0\% | 108\% | - | - |
| Leghti | $5 \quad 96$ | 1 | 53 | - | 61 | . 0 | 0 | 171 | - | 21 | 6 | 0 | 29 | - | 270 |
| \% Leghti | 100\% . $58 \% \%$ | 100\% | . $58 \%$ | - | . 98\% | . 48 \% | 0\% | . 58 \% | - | 100\% | 100\% |  | 100\% | - | 48)\% |
| Crtclulated kruTSi and Ungle-Bnd kruTSi | $0 \quad 0$ | 0 | 0 | - | 1 | 1 | 0 | 2 | - | 0 | 0 | 0 | 0 | - | 2 |
| \% Crtctulated kruTSi and Ungle-Bna kruTSi | 0\% 0\% | 0\% | 0\% | - | 18 \% | 181\% | 0\% | 18\% | - | 0\% | 0\% | 0\% | 0\% | - | 084\% |
| Puiei | $0 \quad 1$ | 0 | 1 | - | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | - | 2 |
| \% Puiei | 0\% 18\% | 0\% | 18\% | - | 18 \% | 0\% | 0\% | 06\% | - | 0\% | 0\% | 0\% | 0\% | - | 084\% |
| PctyTlei on Road | $0 \quad 1$ | 0 | 1 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 1 |
| \% PctyTlei on Road | 0\% 18\% | 0\% | 18\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 08\% |
| Aedei trani | - - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 10 |  |
| \% Aedeitrani | - - | - | - | - | - | - | - | - | - | - | - | - | - | 100\% | - |
| P clyTlei on s roiiwalS | - - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 |  |
| \% P clyTlei on s roiiwalS | - - | - | - | - | - | - | - | - | - | - | - | - | - | 0\% | - |

[^11]South Street-Mulberry Street Weekday PM - TMC
Wed Mar 1, 2023
Full Length (7 AM-9 AM)
Cll s laiiei (Leghti, CrtcTulated kruTSi and Ungle-Bnat kruTSi, Puiei, Aedeitrani, PcTyTlei on Road, PctyTlei on s roiiwalS)
Cll Movementi
ID: 1072442, LoTatcon: 718 29016, -538 05371

Aroveded by: s reghton Mannang
Engneerng, LLA
2 Wanneri s aTle, Clbany, NY, 12206, BU

## [N] Mulberry St

Total: 124
In: 26 Out: 98
ค $\stackrel{-}{\sim}$


AM AeaP k ( 7 : AM - : 7 : AM8-) OerawAeaP l Hor
u wCvasses LLights, u rticovated TrocPs and Singve-Unit TrocPs, Boses, Aedestrians, Bicycves
H RHed, Bicycues H CrłsswavP8
u wMHOements
ID710( 2442, LHcatiH7(19 2601: , -539 053(1

ArHOded by7CreightH Manning Engineering, LLA 2 Winners Circue, u bany, NY, 1220: , US

| Leg Directiњ |  | SHth St <br> EastbHnd |  |  |  |  | SHth St WestbHond |  |  |  |  | Moberry St SHthbHond |  |  |  |  |  | Int |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time |  | L | T | U | upp | Aed* | T | R |  | upp | Aed* |  | L | R | U | upp | Aed* |  |  |
|  | 2023-03-01 ( 7 : AM | 0 | : | 1 | 6 | 0 | . | 13 |  | 22 | 0 | : | : | 0 | 0 | : | 0 |  | 33 |
|  | : 700AM | 2 | 10 | 0 | 12 | 0 | 5 | $1($ |  | 21 | 0 |  | 1 | 2 | 0 | 3 | 1 |  | 36 |
|  | : 71: AM | 0 | 5 | 0 | 5 | 0 | 5 | 13 |  | 20 | 0 |  | 2 | 1 | 0 | 3 | 3 |  | 30 |
|  | : 730AM | 1 | 11 | 0 | 12 | 0 | : | 12 |  | 15 | 0 | : | : | 1 | 0 | 6 | 3 |  | 3 : |


| THav | 3 | 33 | 1 | 35 | 0 | 24 | :2 | 0 | 40 | 0 | 13 | ( | 0 | 15 | 5 | 13( |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% u pprFhch | 491\% | 4. $9 \%$ | 29\% | - |  | 3: 9\% | 6: 9\%\% 0\% | 0\% | - | - | 569 \% | $239 \% 0$ |  | - | - |  |
| \% THav | 29\% | 2(6\% | 05\% | 259\% |  | $209 \%$ | 3494\% 0\% | 0\% | :.5\% |  | . 5\% | 39\% 0 | 0\% | 129\% | - |  |
| Al F | 095: | 05: 0 | 0¢: 0 | 0551 |  | 0554 | 092. | - | 090. |  | 096: 0 | 0900 | - | 09504 |  | 0931 |
| Lights | 3 | 33 | 1 | 35 |  | 25 | : 2 | 0 | 5. |  | 13 | ( | 0 | 15 | - | 133 |
| \% Lights | 100\% | 100\% | 100\% | 100\% |  | . $69 \%$ | 100\% 0\% | 0\% | . $494 \%$ |  | 100\% | 100\% 0 | 0\% | 100\% |  | . $8 \%$ |
| u rticovated TrocPs and Singe-Unit TrocPs | 0 | 0 | 0 | 0 | - | 1 | 0 | 0 | 1 |  | 0 | 0 | 0 | 0 |  | 1 |
| \% u rticouated TrocPs and Singe-Unit TrocPs | 0\% | 0\% | 0\% | 0\% | - | 396\% | 0\% 0\% |  | 13\% |  | 0\% | 0\% 0\% |  | 0\% |  | 05\% |
| Boses | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |  | 0 |
| \% Boses | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% 0\% |  | 0\% |  | 0\% | 0\% 0 |  | 0\% | - | 0\% |
| Bicycres H RHd | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |  | 0 |
| \% Bicycres H RHbd | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% 0\% | 0\% | 0\% |  | 0\% | 0\% 0\% |  | 0\% |  | 0\% |
| Aedestrians | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 5 |  |
| \% Aedestrians | - | - | - | - |  | - | - | - | - |  | - | - | - | - | 100\% |  |
| Bicycres H CrłmswavP | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 |  |
| \% Bicycres H CrHswaw | - | - | - | - |  | - | - | - | - |  | - | - | - | - | 0\% |  |

[^12]South Street-Mulberry Street Weekday PM - TMC
Wed Mar 1, 2023
AM AeaP k ( : AM - : オ: AM8-) OerawAeaPl Hr
u wCuasses kLights, u rticovated TrocPs and Single-Unit TrocPs, Boses, Aedestrians, Bicycres
H RFad, Bicycyes H CrHswavP8
u wMHOements
ID710(2442, LHatiH7(19 2601: , -539 053(1

ArHOded by7CreightH Manning
Engineering, LLA
2 Winners Circve, u bany, NY, 1220: , US
[N] Mulberry St
Total: 72
In: 17 Out: 55


MFul aLndg thh ( 7 A - 79
( u) ŁeCaCtl sngd2( idscFledaTkiFcSCeLT W\&LnıaULsdkiFcSC2BFGC2- aTaCdseLC2BscPcıaCyL o yeT2BscPcıaCyL ) iyCRelS9

- iyusTaTr PD) iasngdjL 7 eLLsLn 5LnsLaaisLn2l l-
1 b sLLaiC) sicla2
( u eLP2E N2h110, 2UW

| $\begin{array}{\|l\|} \hline 1 \text { an } \\ \text { I siacdyL } \end{array}$ | 5eCd7 eiSadW4 $5 \mathrm{eCd} y F L T$ |  |  |  |  |  | 5eCd7 eiSadWd <br> b aCd yFLT |  |  |  |  |  | 7 Fur aiiP VA Eyidr yFLT |  |  |  |  |  |  | 7 FuraiiP Wd WyFdr yFLT |  |  |  |  |  | nid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ksv a | 1 | k | o |  | ( YY | - aTp | 1 | k | o | U | ( YY- | aTp |  | 1 | k | o | U | ( YY | - aTp | - 1 | k | o | U |  |  |  |
| 1013A1A, hhID0( 7 | h | 1* | 0 | 0 | 18 | h | 0 | 14 | 8 | 0 | 3 , | 0 |  | , | h | 0 | 0 | * | h | - 1 | 0 | 3 | 0 |  | 0 | 83 |
| hhibu, ( 7 | , | 30 | 0 | 0 | 3 , | h | 0 | 13 | : | 0 | 18 | 0 |  | 1 | h | 0 | 0 | 3 | h | - 3 | h | 3 | 0 | 8 | h | 81 |
| hhI30( 7 | h | h4 | 0 | 0 | h6 | 0 | h | 33 | * | 0 | :0 | 0 |  | 3 | 3 | 0 | 0 | * | h | - 3 | 0 | h | 0 | : | 0 | * 6 |
| hhD, ( 7 | 1 | 31 | 0 | 0 | 3: | 0 | 0 | 34 | 3 | 0 | :h | 0 |  | h | , | h | 0 | 8 | 0 | 0 | h | 0 | 0 | 8 | 0 | 46 |
| HyFiup kyduu | 6 | h0* | 0 | 0 | hh, | 1 | h | h11 | 10 | 0 | h: 3 | 0 |  | hh | h0 | h | 0 | 11 | 3 | 3 h : | 1 | 8 | 0 | 13 | h | 303 |
| h1100-7 | 1 | 14 | h | 0 | 3h | 0 | 1 | 1, | : | 0 | 3h | 0 |  | 4 | : | h | 0 | h3 | 0 | * | 3 | , | 0 | h: | 0 | 46 |
| h11L, - 7 | , | : 0 | 1 | 0 | : 8 | 0 | 0 | 3h | , | 0 | 3* | 0 |  | : | 0 | h | 0 | , | h | h | h | 1 | 0 | 4 | h | 6* |
| h1130-7 | 3 | 1* | 0 | 0 | 16 | 0 | 0 | 38 | 1 | 0 | 36 | 0 |  | 1 | 1 | 1 | 0 | * | 0 | 3 | 0 | h | 0 | : | h | 84 |
| h1D, - 7 | 0 | 10 | h | 0 | 1h | 0 | 0 | 31 | 3 | 0 | 3 , | 0 |  | 0 | h | 0 | 0 | h | 0 | , | h | : | 0 | h0 | 0 | *8 |
| HyFiup kydeu | h0 |  | : | 0 | h14 | 0 | 1 | h1, | h: | 0 | h: h | 0 |  | h: | 8 | : | 0 | 1, | h | h h6 | , | h1 | 0 | 3* | 1 | 330 |
| hD0-7 | 1 | 31 | 0 | 0 | 3: | 0 | 0 | 33 | * | 0 | 36 | 0 |  | 1 | 1 | 0 | 0 | : | 0 | , | 1 | h | 0 | 4 | 0 | 4, |
| hib, - 7 | 1 | : 0 | : | 0 | :* | 0 | h | 3h | h | 0 | 33 | 0 |  | 1 | 1 | 0 | 0 | : | h | h | h | , | 0 | hh | 0 | 6: |
| h[30-7 | 3 | 31 | 0 | 0 | 3 , | 0 | h | : 0 | 1 | 0 | :3 | 0 |  | , | , | h | 0 | hh | 0 | , | : | 1 | 0 | hh | 0 | h00 |
| hD, - 7 | h | 3: | 0 | 0 | 3 , | 0 | h | 36 | 1 | 0 | : 1 | 0 |  | h | 4 | 0 | 0 | 6 | 3 | 8 | : | 8 | 0 | h4 | 0 | h0: |
| HyFiup kydeu | 4 | h34 | : | 0 | h, 0 | 0 | 3 | $\mathrm{h}: 3$ | hh | 0 | h, 8 | 0 |  | h0 | h8 | h | 0 | 14 | : | 11 | hh | h, | 0 | : 4 | 0 | 343 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| HyFiu kydu | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ky¢u | 18 | 3, 4 | 4 | 0 | 363 | 1 | * | 360 | :, | 0 | ::h | 0 |  | 3 , | 3: | * | 0 | 8, | 4 | 4 , , | h4 | 3: | 0 | h08 | 3 | h0h* |
| \% ( YYiyecg | *.6\% | 6h.h\% | 1.0\% 0 |  | A |  | h.: \% | 44.: \% | h0.1\% 0 |  | A | A |  | *.8\% : | : , .3\% | 4.0\% 0 |  | A |  | A, h.: \% h | $\mathrm{h}^{*} .4 \%$ | 3h.4\% 0 |  | A | A | A |
| \% kydu | 1.8\% | 3, .1\% | 0.4\% 0 | \% 3 | 34.8\% |  | 0.*\% 3 | 34.: \% | : .: \% 0\% | 0\% : | 3.: \% | A |  | 3.: \% | 3.3\% | 0.*\% 0 | \% 8 | 8.: \% |  | A , .: \% | h.4\% | 3.3\% 0 | \% | 0., \% |  | A |
| 1 sngd | 18 | 3: : | * | 0 | 388 | A | A | 38: | : | 0 | : 1: | A | A | 3, | 3: | * | 0 | 8, |  | A , : | h4 | 3: | 0 | h0* | A | 641 |
| \% 1 sngd | h00\% 6 | 6*.h\% 8 | , .0\% 0\% | \% 6 | , .6\% |  | h00\% 6 | 6, .6\% | 68.4\% 0\% | 0\% 6 | 6*.h\% |  |  | h00\% | h00\% | h00\% 0\% | 0\% h | 00\% |  | A64.1\% | h00\% | h00\% 0 | \% | 66.h\% |  | 6*.8\% |
| ( idcFıedT kiFcSCeLT WhnuaUlsdkiFcSC | 0 | h : | 1 | 0 | h* |  | - 0 | h* | h | 0 | h8 |  |  | 0 | 0 | 0 | 0 | 0 |  | A h | 0 | 0 | 0 | h | A | 3: |
| $\begin{array}{r} \text { \% ( ibcFued TkiFcSCeLT } \\ \text { WALnuAULsdkiFcSG } \end{array}$ | 0\% | 3.6\% 1 | , .0\% 0 | \% | : .h\% | A | A 0\% | : .h\% | 1.1\% 0\% |  | 3.6\% | A | A | 0\% | 0\% | 0\% 0\% |  | 0\% | A | A h.4\% | 0\% | 0\% 0 |  | 0.6\% | A | 3.3\% |
| BFGO | 0 | 0 | 0 | 0 | 0 | A | A 0 | 0 | 0 | 0 | 0 |  | A | 0 | 0 | 0 | 0 | 0 |  | A 0 | 0 | 0 | 0 | 0 | A | 0 |
| \% BFGC | 0\% | 0\% | 0\% 0 |  | 0\% | A | 0\% | 0\% | 0\% 0\% |  | 0\% | A | A | 0\% | 0\% | 0\% 0\% |  | 0\% | A | A 0\% | 0\% | 0\% 0 |  | 0\% | A | 0\% |
| BscPcuCyL o yeT | 0 | 0 | 0 | 0 | 0 | A | - 0 | 0 | 0 | 0 | 0 |  | A | 0 | 0 | 0 | 0 | 0 |  | A 0 | 0 | 0 | 0 | 0 | A | 0 |
| \% BscPabCyL o yeT | 0\% | 0\% | 0\% 0 |  | 0\% | A | 0\% | 0\% | 0\% 0\% |  | 0\% | A | A | 0\% | 0\% | 0\% 0\% |  | 0\% | A | A $0 \%$ | 0\% | 0\% 0 |  | 0\% | A | 0\% |
| - aTaCdseLO | A | A | A | A | A | 1 | A | A | A | A | A | 0 |  | A | A | A | A | A | 4 | 4 A | A | A | A | A | 3 |  |
| \% - aTaCdseLC | A | A | A | A | Ah | 00\% | A | A | A | A | A |  |  | A | A | A | A | Ah | 00\% | A | A | A |  | A | 100\% | A |
| BscPclaCyL ) iy(CReuS | A | A | A | A | A | 0 | A | A | A | A | A | 0 |  | A | A | A | A | A | 0 | A | A | A | A | A | 0 |  |
| \% BscPcıaCyL ) iy(CReuS | A | A | A | A | A | 0\% | A | A | A | A | A |  |  | A | A | A | A | A |  | A | A | A | A | A | 0\% | A |

P- aTaCdseLCeLT BscPcıaCyL ) iyCReuS. 1 Dl afdZo Do sngdk DkgiF2UDUAk FiL

WedMrir 1, 21013
MFul aLnd thh ( 7 A - 79
( u) ъeCaCtl sngd2( ibcFıedT kiFcSCeLT W\&LnıaULsdkiFcSC2BFGC2- aTaCd seLC2BscPcıaC yL o yeT2BscPcıaCyL ) iyCReuS9
( u7 ywav aLdC
nh Dh0: 148821 ycedylD. h.518h: : 2AB3.508: , 5
[N] Mulberry St
Total: 218
B: 140 I ut: 146
ゅュ


I ut: 82 © : 00
Total: 140
[S] Mulberry St

Sat Feb 25, 2023
Midday Peak (WKND), PM Peak (WKND) (1 PM - 2 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042877, Location: 41.927144, -73.907459

Provided by: Creighton Manning
Engineering, LLP 2 Winners Circle, Albany, NY, 12205, US

| Leg <br> Direction | East Market St Eastbound |  |  |  |  |  | East Market St Westbound |  |  |  |  |  | Mulberry St Northbound |  |  |  |  |  | Mulberry St Southbound |  |  |  |  |  | Int |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | R |  | App |  | L | T | R | U | App |  | L | T | R | U |  | Ped* | L | T | R | U | App |  |  |
| 2023-02-25 1:00PM | 2 | 32 | 0 | 0 | 34 | 0 | 0 | 33 | 6 | 0 |  | 0 | 2 | 2 | 0 | 0 | 4 | 0 | 5 | 2 | 1 | 0 | 8 | 0 | 85 |
| 1:15PM | 2 | 40 | 4 | 0 | 46 | 0 | 1 | 31 | 1 | 0 | 33 | 0 | 2 | 2 | 0 | 0 | 4 | 1 | 5 | 1 | 5 | 0 | 11 | 0 | 94 |
| 1:30PM | 3 | 32 | 0 | 0 | 35 | 0 | 1 | 40 | 2 | 0 |  | 0 | 5 | 5 | 1 | 0 | 11 | 0 | 5 | 4 | 2 | 0 | 11 | 0 | 100 |
| 1:45PM | 1 | 34 | 0 | 0 | 35 | 0 | 1 | 39 | 2 | 0 | 42 | 0 | 1 | 8 | 0 | 0 | 9 | 3 | 7 | 4 | 7 | 0 | 18 | 0 | 104 |
| Total | 8 | 138 | 4 | 0 | 150 | 0 | 3 | 143 | 11 | 0 | 157 | 0 | 10 | 17 | 1 | 0 | 28 | 4 | 22 | 11 | 15 | 0 | 48 | 0 | 383 |
| \% Approach | 5.3\% 9 | 92.0\% | 2.7\% 0 |  | - | - | 1.9\% 9 | 91.1\% | 7.0\% 0\% |  | - |  | 35.7\% 6 | 60.7\% | 3.6\% 0\% |  | - |  | 45.8\% | 22.9\% | 31.3\% 0 |  | - |  | - |
| \% Total | 2.1\% 3 | 36.0\% | 1.0\% 0 | \% 39 | 39.2\% | - | 0.8\% | 37.3\% | 2.9\% 0\% | \% 4 | 41.0\% |  | 2.6\% | 4.4\% | 0.3\% 0\% | \% | 7.3\% | - | 5.7\% | 2.9\% | 3.9\% 0 | \% 1 | 12.5\% |  | - |
| PHF | 0.667 | 0.863 | 0.250 |  | 0.815 |  | 0.750 | 0.894 | 0.458 | - 0 | 0.913 |  | 0.500 | 0.531 | 0.250 | - 0 | 0.636 |  | 0.786 | 0.688 | 0.536 | - 0 | 0.667 |  | 0.921 |
| Lights | 8 | 134 | 2 | 0 | 144 | - | 3 | 137 | 11 | 0 | 151 |  | 10 | 17 | 1 | 0 | 28 | - | 22 | 11 | 15 | 0 | 48 |  | 371 |
| \% Lights | 100\% 9 | 97.1\% 5 | 50.0\% 0 | \% 9 | 6.0\% | - | 100\% | 95.8\% | 100\% 0\% | \% 9 | 96.2\% |  | 100\% | 100\% | 100\% 0\% | \% 1 | 100\% |  | 100\% | 100\% | 100\% 0 | \% | 100\% |  | 96.9\% |
| Articulated Trucks and Single-Unit Trucks | 0 | 4 | 2 | 0 | 6 | - | 0 | 6 | 0 | 0 | 6 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 12 |
| \% Articulated Trucks and <br> Single-Unit Trucks | 0\% | 2.9\% 5 | 50.0\% 0 | \% | 4.0\% | - | 0\% | 4.2\% | 0\% 0 | \% | 3.8\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% | - | 0\% | 0\% | 0\% 0 |  | 0\% | - | 3.1\% |
| Buses | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 |
| \% Buses | 0\% | 0\% | 0\% 0 |  | 0\% | - | 0\% | 0\% | 0\% 0 |  | 0\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% | - | 0\% | 0\% | 0\% 0 |  | 0\% | - | 0\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 |
| \% Bicycles on Road | 0\% | 0\% | 0\% 0 | \% | 0\% | - | 0\% | 0\% | 0\% 0 |  | 0\% | - | 0\% | 0\% | 0\% 0\% |  | 0\% | - | 0\% | 0\% | 0\% 0 |  | 0\% | - | 0\% |
| Pedestrians | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 4 | - | - | - | - | - | 0 |  |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  | 100\% | - | - | - | - | - | - |  |
| Bicycles on Crosswalk | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 | - | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | - |  | - | - | - | - | - | - | - | - | - | - | - | 0\% | - | - | - | - | - | - | - |

[^13]Sat Feb 25， 2023
Midday Peak（WKND），PM Peak（WKND）（1 PM－ 2 PM）－Overall Peak Hour All Classes（Lights，Articulated Trucks and Single－Unit Trucks，Buses，Pedestrians，Bicycles on Road，Bicycles on Crosswalk）
All Movements
ID：1042877，Location：41．927144，－73．907459

Provided by：Creighton Manning
Engineering，LLP
2 Winners Circle， Albany，NY，12205，US
［N］Mulberry St
Total： 84
In： 48 Out： 36
ベー～


Out： 18 In： 28
Total： 46
［S］Mulberry St

MFul aLng thh ( 7 A - 79
( u) ŁeCaCtl sngd2( idccFled TkiFcSCeLT W\&LnıaALsdkiFcSC2BFGC2- aTaCdseLC2BscPcıaC yL o yeT2BscPcıaCyL) iyCReub9
( u7 ywav aLdC
nh Dh0: 144: 21 ycedyLD. h8 160h, 2 §38 053: h

- iynsTaTr PD) iasngdyL 7 eLLsLn bLnsLaaisLn2l 1 -
1 E sLLaiC) sicu2
( u eLP2NY2h110, 2UW

| $\begin{array}{\|l\|} \hline \text { I an } \\ \text { I siacdyL } \\ \hline \end{array}$ | WyFd Wd <br> beCd yFLT |  |  |  |  |  | WyFd Wd E aCd yFLT |  |  |  |  | 7 FuraiiP Wd WyFdr yFLT |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ksva | 1 | k | U | ( pp | - aT* |  | k | о |  | ( pp | - aT* | 1 | o | U | ( pp | - aT* | nid |
| 1013A1A, hhID0( 7 | h | 4 | 0 | . | 0 |  | : | : | 0 | 4 | 0 | h | h | 0 | 1 | h | h. |
| hhilm, ( 7 | h | 5 | 0 | 4 | 0 |  | h: | 1 |  | h6 | 0 | h | 0 | 0 | h | 0 | 1, |
| hhГ30( 7 | 0 | : | 0 | : | 0 |  | 4 | 6 |  | h: | 0 | h | h | 0 | 1 | h | 10 |
| hhD, ( 7 | h | , | 0 | 6 | 0 |  | hh | 6 |  | h5 | 0 | 0 | h | 0 | h | 0 | 1: |
| HyFiup kycu | 3 | 1 : | 0 | 15 | 0 |  | 35 | h4 | 0 | , | 0 | 3 | 3 | 0 | 6 | 1 | 44 |
| h1D0- 7 | 0 | 6 | 0 | 6 | 0 |  | 3 | h1 |  | h, | 0 | : | 1 | h | 5 | h | 14 |
| h11D, - 7 | 0 | . | 0 | . | 0 |  | 3 | , | 0 | 4 | 0 | 3 | 0 | 0 | 3 | 0 | 10 |
| h1130-7 | 1 | 3 | 0 | , | 0 |  | 3 | : | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | h1 |
| h1D, - 7 | 0 | 6 | 0 | 6 | 0 |  | 3 | h |  | : | 0 | 1 | 0 | 0 | 1 | 0 | h1 |
| HyFiup kycu | 1 | 1 : | 0 | 16 | 0 |  | h1 | 11 | 0 | 3: | 0 | . | 1 | h | h1 | h | 51 |
| hD00-7 | 0 | 0 | 0 | 0 | 0 |  | 5 | : | 0 | hh | 0 | 1 | 0 | 0 | 1 | 0 | h3 |
| hID, - 7 | 0 | : | 0 | : | 0 |  | 3 | : | 0 | 5 | 0 | 3 | h | 0 | : | , | h, |
| h[30-7 | h | . | 0 | h0 | 0 |  | : | hh | 0 | h, | 0 | 6 | 0 | 0 | 6 | 0 | 3h |
| hD, - 7 | h | 6 | 0 | 5 | 0 |  | 4 | h0 | 0 | h4 | 0 | : | 0 | 0 | : | 0 | 1. |
| HyFiup kycu | 1 | h. | 0 | 1h | 0 |  | 11 | 1. | 0 | , h | 0 | h, | h | 0 | h6 | , | 44 |
| kydu | 5 | 65 | 0 | 5: | 0 |  | 5h | 6. | 0 | h: 0 | 0 | 15 | 6 | h | 3: | 4 | 1:4 |
| \% ( ppiyecg | . 8 \% | . 08 \% | 0\% | A | A |  | , 08\% | : . $8 \%$ | 0\% | A | A | 5. 8 \% | h5\%\% | 18 \% | A | A | A |
| \% kydu | 184\% | 158\% | 0\% | 1.8\% | A | A | 148\% | 158\% | 0\% | , 68 \% | A | h08 \% | 18 \% | 08 \% | h38\% | A | A |
| 1 sngd | 5 | 66 | 0 | 53 | A | A | 50 | 64 | 0 | h34 | A | 16 | 6 | h | 33 | A | 1:: |
| \% 1 sngd | h00\% | . 48 \% | 0\% | . 48\% | A | A | . $48 \%$ | . $46 \%$ |  | . 48\% | A | . $68 \%$ | h00\% | h00\% | . 58\% | A | . 48 \% |
| ( ibcFıedTkiFcSCeLT WLnua/ULsdkiFcSC | 0 | h | 0 | h | A | A | h | h | 0 | 1 | A | h | 0 | 0 | h | A | : |
| \% ( idcFuedTkiFcSCeLT WıLnuaAUsdkiFcSC | 0\% | h8 \% | 0\% | h8\% | A | A | h8 \% | h8 \% |  | h8\% | A | 38\% | 0\% | 0\% | 18 \% | A | h8\% |
| BFGC | 0 | 0 | 0 | 0 | A | A | 0 | 0 | 0 | 0 | A | 0 | 0 | 0 | 0 | A | 0 |
| \% BFGC | 0\% | 0\% |  | 0\% | A | A | 0\% | 0\% |  | 0\% | A | 0\% | 0\% | 0\% | 0\% | A | 0\% |
| BscPabCyL o yeT | 0 | 0 | 0 | 0 | A | A | 0 | 0 | 0 | 0 | A | 0 | 0 | 0 | 0 | A | 0 |
| \% BscPcuaCyL o yeT | 0\% | 0\% | 0\% | 0\% | A | A | 0\% |  |  | 0\% | A | 0\% | 0\% | 0\% | 0\% | A | 0\% |
| - aTaCdseLC | A | A | A | A | 0 |  | A | A | A | A | 0 | A | A | A | A | 4 |  |
| \% - aTaCdseLC | A | A | A | A | A | A | A | A | A | A | A | A | A | A |  | h00\% | A |
| BscPcıaCyL ) iyCReus | A | A | A | A | 0 |  | A | A | A | A | 0 | A | A | A | A | 0 |  |
| \% BscPcıaCyL ) iyCReus | A | A | A A | A | A | A | A | A |  | A | A | A A | A | A | A | 0\% | A |

[^14]( w) leCGaCtl sngd2( idbcFled T kiFcSCeLT W\&LnıaAULsdkiFcSC2BFGC2- aTaCdseLC2BscPcıaC
yL o yeT2BscPcuaCyL ) iyCReuS9
( u7 ywav aLdC
nh Dh0: 144: 21 ycedsyLD. h8 160h, 2Æ38 053: h
[N] Mulberry St
Total: 333
In: 91 Out: 66
$+\stackrel{\ominus}{\sim} m$


45

63

South Street－Mulberry Street Saturday Midday－TMC
Sat Feb 25， 2023
Midday Peak（WKND）（11－15 OM v12－15 PM）vr l eHmePeak u ACH
 AUwAad，RiTyTæLAUs HALmadk）
OœMA eI eUL
：D－1042884，g ATatiAU 417．29015，vE37．0E341

PHA ided by－s FihctAUMaUUU YUhiUeeHilh，ggP 2 WiUUEHs iHæ，
OdaUy，Np ，12205，BS

| geh <br> Dif＠TiAU | SACtc St YaItbAOU |  |  |  |  | SAGtc StWeLtbAOUd |  |  |  |  |  | $\begin{aligned} & \text { MCbeHy St } \\ & \text { SAOcbAOU } \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| niI e | g | n | B | O＊＊ | Ped6 | n | w | B |  | O＊＊ | Ped6 | g | W | B | O＊＊ | Ped6 | ：U |
| 2023v02v25 11－15OM | 1 | E | 0 | 8 | 0 | 14 | 2 |  |  | 19 | 0 | 1 | 0 | 0 | 1 | 0 | 25 |
| 11－300M | 0 | 4 | 0 | 4 | 0 | 8 | 9 |  |  | 14 | 0 | 1 | 1 | 0 | 2 | 1 | 20 |
| 11－45OM | 1 | 5 | 0 | 9 | 0 | 11 | 9 |  |  | 1E | 0 | 0 | 1 | 0 | 1 | 0 | 24 |
| 12－00PM | 0 | 9 | 0 | 9 | 0 | 3 | 12 | 0 |  | 15 | 0 | 4 | 2 | 1 | E | 1 | 28 |
| n Atao | 2 | 22 | 0 | 24 | 0 | 39 | 29 | 0 |  | 92 | 0 | 9 | 4 | 1 | 11 | 2 | E |
| \％O＊＊${ }^{\text {＊}}$ AaTc | 873\％ | ．17\％ | 0\％ | v | v | 587\％ | 417．\％ |  |  | v | V | 54万\％ | 3974\％ | ． $71 \%$ | v | $\checkmark$ | $v$ |
| \％n Atao | 27\％ | 22世\％ | 0\％ | 24世\％ | v | 3E7\％ | 2978\％ | 0\％ |  | 937．\％ | $v$ | 972\％ | 471\％ | 17\％ | 117\％ | $v$ | v |
| PuF | 0 万00 | 07889 | v | 07550 | v | 07943 | 0 万42 | v |  | 07.12 | $v$ | 073E5 | 0 000 | 07250 | 073.3 | $\checkmark$ | 0789 |
| gihctL | 2 | 21 | 0 | 23 | $\checkmark$ | 35 | 29 | 0 |  | 91 | $v$ | 9 | 4 | 1 | 11 | $v$ | ． 5 |
| \％gihctL | 100\％ | ．5万\％ | 0\％ | ．58\％ | v | ．E72\％ | 100\％ |  |  | 87\％ | V | 100\％ | 100\％ | 100\％ | 100\％ | $\checkmark$ | E7．\％ |
| OFiTCated nKCTkLaUd SiUhæ日BUt nKCIkL | 0 | 1 | 0 | 1 | v | 1 | 0 | 0 |  | 1 | $v$ | 0 | 0 | 0 | 0 | $\checkmark$ | 2 |
| \％OFFiCated nKCTkLaUd SiUhæ日BUt nKCIkL | 0\％ | 4万\％ | 0\％ | 472\％ | v | 27\％ |  |  |  | 17\％ | $v$ | 0\％ | 0\％ | 0\％ | 0\％ | $\checkmark$ | 271\％ |
| RGeL | 0 | 0 | 0 | 0 | v | 0 | 0 | 0 |  | 0 | v | 0 | 0 | 0 | 0 | $\checkmark$ | 0 |
| \％RGeL | 0\％ | 0\％ | 0\％ | 0\％ | v | 0\％ | 0\％ |  |  | 0\％ | V | 0\％ | 0\％ | 0\％ | 0\％ | $\checkmark$ | 0\％ |
| RiTyTæLAUwAad | 0 | 0 | 0 | 0 | v | 0 | 0 | 0 |  | 0 | v | 0 | 0 | 0 | 0 | $\checkmark$ | 0 |
| \％RiTyTæLAUwAad | 0\％ | 0\％ |  | 0\％ | v | 0\％ | 0\％ |  |  | 0\％ | v | 0\％ | 0\％ | 0\％ | 0\％ | $\checkmark$ | 0\％ |
| PedeItHaU | v | v | v | v | 0 | v | v |  |  | v | 0 | v | v | v | v | 2 |  |
| \％PedeItHaU | v | v | v | v | v | v | v | v |  | v | $v$ | v | v | v | v | 100\％ | v |
| RiTyTæLAUs HALmak | v | v | v | v | 0 | v | v |  |  | v | 0 | v | v | v | v | 0 |  |
| \％RiTyTœLAUs HALmak | v | v | v | v | v | v v | V |  |  | v | v | V | V | v | V | 0\％ | v |

[^15]Total: 40
In: 11 Out: 29


South Street-Mulberry Street Saturday Midday - TMC
Sat Feb 25, 2023
PM Peak (WKND) (1 PM - 2 PM)
All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042884, Location: 41.926015, -73.907341

Provided by: Creighton Manning Engineering, LLP 2 Winners Circle, Albany, NY, 12205, US

| Leg <br> Direction | South St Eastbound |  |  |  |  | South St Westbound |  |  |  |  | Mulberry St Southbound |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | L | T | U | App | Ped* | T | R | U | App | Ped* | L | R | U | App | Ped* | Int |
| 2023-02-25 1:00PM | 0 | 0 | 0 | 0 | 0 | 7 | 4 | 0 | 11 | 0 | 2 | 0 | 0 | 2 | 0 | 13 |
| 1:15PM | 0 | 4 | 0 | 4 | 0 | 3 | 4 | 0 | 7 | 0 | 3 | 1 | 0 | 4 | 5 | 15 |
| 1:30PM | 1 | 9 | 0 | 10 | 0 | 4 | 11 | 0 | 15 | 0 | 6 | 0 | 0 | 6 | 0 | 31 |
| 1:45PM | 1 | 6 | 0 | 7 | 0 | 8 | 10 | 0 | 18 | 0 | 4 | 0 | 0 | 4 | 0 | 29 |
| Total | 2 | 19 | 0 | 21 | 0 | 22 | 29 | 0 | 51 | 0 | 15 | 1 | 0 | 16 | 5 | 88 |
| \% Approach | 9.5\% | 90.5\% | 0\% | - | - | 43.1\% | 56.9\% | 0\% | - | - | 93.8\% | 6.3\% | 0\% | - | - | - |
| \% Total | 2.3\% | 21.6\% | 0\% | 23.9\% | - | 25.0\% | 33.0\% | 0\% | 58.0\% | - | 17.0\% | 1.1\% | 0\% | 18.2\% | - | - |
| PHF | 0.500 | 0.528 | - | 0.525 | - | 0.688 | 0.659 | - | 0.708 | - | 0.625 | 0.250 | - | 0.667 | - | 0.710 |
| Lights | 2 | 19 | 0 | 21 | - | 22 | 28 | 0 | 50 | - | 14 | 1 | 0 | 15 | - | 86 |
| \% Lights | 100\% | 100\% | 0\% | 100\% | - | 100\% | 96.6\% | 0\% | 98.0\% | - | 93.3\% | 100\% | 0\% | 93.8\% | - | 97.7\% |
| Articulated Trucks and Single-Unit Trucks | 0 | 0 | 0 | 0 | - | 0 | 1 | 0 | 1 | - | 1 | 0 | 0 | 1 | - | 2 |
| \% Articulated Trucks and Single-Unit Trucks | 0\% | 0\% | 0\% | 0\% | - | 0\% | 3.4\% | 0\% | 2.0\% | - | 6.7\% | 0\% | 0\% | 6.3\% | - | 2.3\% |
| Buses | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 |
| \% Buses | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% |
| Bicycles on Road | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 |
| \% Bicycles on Road | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% | 0\% | 0\% | 0\% | - | 0\% |
| Pedestrians | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 5 |  |
| \% Pedestrians | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 100\% | - |
| Bicycles on Crosswalk | - | - | - | - | 0 | - | - | - | - | 0 | - | - | - | - | 0 |  |
| \% Bicycles on Crosswalk | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0\% | - |

[^16]All Classes (Lights, Articulated Trucks and Single-Unit Trucks, Buses, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)
All Movements
ID: 1042884, Location: 41.926015, -73.907341
[N] Mulberry St
Total: 14
In: 97 Out: 89
の $ั$ の


# ATTACHMENT C LEVEL OF SERVICE ANALYSIS 

6 Mulberry Street<br>Village of Rhinebeck<br>Dutchess County, New York

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 4.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | \& |  |  | $\uparrow$ |  |  | \$ |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 6 | 98 | 2 | 5 | 121 | 34 | 19 | 48 | 3 | 33 | 5 | 9 |
| Future Vol, veh/h | 6 | 98 | 2 | 5 | 121 | 34 | 19 | 48 | 3 | 33 | 5 | 9 |
| Conflicting Peds, \#/hr | 3 | 0 | 6 | 6 | 0 | 3 | 2 | 0 | 2 | 2 | 0 | 2 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 |
| Heavy Vehicles, \% | 0 | 3 | 0 | 0 | 3 | 0 | 6 | 10 | 0 | 3 | 0 | 0 |
| Mvmt Flow | 8 | 132 | 3 | 7 | 164 | 46 | 26 | 65 | 4 | 45 | 7 | 12 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.7 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | \& |  |  | \$ |  |  |  |  |  | ¢ |  |
| Traffic Vol, veh/h | 4 | 70 | 60 | 94 | 159 | 8 | 0 | 0 | 0 | 4 | 25 | 1 |
| Future Vol, veh/h | 4 | 70 | 60 | 94 | 159 | 8 | 0 | 0 | 0 | 4 | 25 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 |
| Heavy Vehicles, \% | 0 | 4 | 3 | 5 | 0 | 0 | 2 | 2 | 2 | 0 | 4 | 0 |
| Mvmt Flow | 5 | 92 | 79 | 124 | 209 | 11 | 0 | 0 | 0 | 5 | 33 | 1 |




| Major/Minor | Major1 | Major2 |  | Minor2 |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Conflicting Flow All | 197 | 0 | - | 0 | 198 | 141 |
| $\quad$ Stage 1 | - | - | - | - | 141 | - |
| Stage 2 | - | - | - | - | 57 | - |
| Critical Hdwy | 4.1 | - | - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1388 | - | - | - | 795 | 912 |
| $\quad$ Stage 1 | - | - | - | - | 891 | - |
| Stage 2 | - | - | - | - | 971 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1387 | - | - | - | 788 | 911 |
| Mov Cap-2 Maneuver | - | - | - | - | 788 | - |
| $\quad$ Stage 1 | - | - | - | - | 884 | - |
| Stage 2 | - | - | - | - | 970 | - |


| Approach | EB | WB | SB |
| :--- | ---: | ---: | ---: |
| HCM Control Delay, S | 1.4 | 0 | 9.6 |
| HCM LOS |  |  | A |


| Minor Lane/Major Mvmt | EBL | EBT | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1387 | - | - | -806 |
| HCM Lane V/C Ratio | 0.006 | - | - | -0.026 |
| HCM Control Delay (s) | 7.6 | 0 | - | - |
| HCM Lane LOS | A | A | - | - |
| HCM 95th \%tile Q(veh) | 0 | - | - | - |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\hat{\dagger}$ |  |  | $\uparrow$ |  |  | 4 |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 0 | 8 | 20 | 29 | 18 | 0 | 95 | 85 | 0 | 0 | 178 | 1 |
| Future Vol, veh/h | 0 | 8 | 20 | 29 | 18 | 0 | 95 | 85 | 0 | 0 | 178 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control Stap | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 0 | 6 | 0 | 4 | 0 | 8 | 0 | 3 | 100 |
| Mvmt Flow | 0 | 13 | 33 | 48 | 30 | 0 | 156 | 139 | 0 | 0 | 292 | 2 |


| Major/Minor | Minor2 |  |  | Minor1 |  |  | Major1 |  |  | Major2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | - | 744 | 293 | 767 | 745 | - | 294 | 0 | 0 | 139 | 0 | 0 |  |
| Stage 1 | - | 293 | - | 451 | 451 | - | - | - | - | - | - | - |  |
| Stage 2 | - | 451 | - | 316 | 294 | - | - | - | - | - | - | - |  |
| Critical Hdwy | - | 6.5 | 6.2 | 7.1 | 6.56 | - | 4.14 | - | - | 4.1 | - | - |  |
| Critical Hdwy Stg 1 | - | 5.5 | - | 6.1 | 5.56 | - | - | - | - | - | - | - |  |
| Critical Hdwy Stg 2 | - | 5.5 | - | 6.1 | 5.56 | - | - | - | - | - | - | - |  |
| Follow-up Hdwy | - | 4 | 3.3 | 3.5 | 4.054 | - | 2.236 | - | - | 2.2 | - | - |  |
| Pot Cap-1 Maneuver | 0 | 345 | 751 | 322 | 338 | 0 | 1256 | - | - | 1457 | - | - |  |
| Stage 1 | 0 | 674 | - | 592 | 564 | 0 | - | - | - | - | - | - |  |
| Stage 2 | 0 | 574 | - | 699 | 662 | 0 | - | - | - | - | - | - |  |
| Platoon blocked, \% |  |  |  |  |  |  |  | - | - |  | - | - |  |
| Mov Cap-1 Maneuver | - | 298 | 751 | 267 | 292 | - | 1256 | - | - | 1457 | - | - |  |
| Mov Cap-2 Maneuver | - | 298 | - | 267 | 292 | - | - | - | - | - | - | - |  |
| Stage 1 | - | 674 | - | 512 | 488 | - | - | - | - | - | - | - |  |
| Stage 2 | - | 497 | - | 655 | 662 | - | - | - | - | - | - | - |  |


| Approach | EB | WB | NB | SB |
| :--- | ---: | ---: | ---: | ---: |
| HCM Control Delay, s | 12.5 | 23 | 4.4 | 0 |


| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1WBLn1 | SBL | SBT | SBR |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1256 | - | - | 524 | 276 | 1457 | - |
| HCM Lane V/C Ratio | 0.124 | - | - | -088 | 0.279 | - | - |
| HCM Control Delay (s) | 8.3 | 0 | - | 12.5 | 23 | 0 | - |
| HCM Lane LOS | A | A | - | B | C | A | - |
| HCM 95th \%ttile Q(veh) | 0.4 | - | - | 0.3 | 1.1 | 0 | - |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | * |  |  | * |  |  | \$ |  |  | 4 |  |
| Traffic Vol, veh/h | 21 | 170 | 4 | 2 | 116 | 30 | 22 | 75 | 6 | 35 | 18 | 14 |
| Future Vol, veh/h | 21 | 170 | 4 | 2 | 116 | 30 | 22 | 75 | 6 | 35 | 18 | 14 |
| Conflicting Peds, \#/hr | 4 | 0 | 27 | 27 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 3 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 |
| Heavy Vehicles, \% | 0 | 2 | 0 | 0 | 2 | 2 | 3 | 5 | 0 | 1 | 7 | 0 |
| Mvmt Flow | 25 | 200 | 5 | 2 | 136 | 35 | 26 | 88 | 7 | 41 | 21 | 16 |



HCM 6th TWSC
Dutchess Shepherd LLC; 123-020

2: S. Parsonage St/N. Parsonage St \& E. Market St



| Approach | EB | WB | SB |
| :--- | :---: | :---: | :---: |
| HCM Control Delay, s | 0.1 | 1.2 | 11.6 |
| HCM LOS |  | $B$ |  |


| Minor Lane/Major Mvmt | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1407 | - | - | 1302 | - | - |
| HCM Lane V/C Ratio | 0.001 | - | -0.022 | - | -0.063 |  |
| HCM Control Delay (s) | 7.6 | 0 | - | 7.8 | 0 | - |
| HCM Lane LOS | A | A | - | A | A | - |
| HCM 95th \%ttile Q(veh) | 0 | - | - | 0.1 | - | - |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |



HCM 6th TWSC
Dutchess Shepherd LLC; 123-020

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.3 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\uparrow$ |  |  | $\uparrow$ |  |  | ¢ |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 0 | 20 | 50 | 31 | 13 | 0 | 135 | 0 | 132 | 2 | 97 | 5 |
| Future Vol, veh/h | 0 | 20 | 50 | 31 | 13 | 0 | 135 | 0 | 132 | 2 | 97 | 5 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control S | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 |
| Heavy Vehicles, \% | 0 | 10 | 6 | 3 | 0 | 0 | 2 | 0 | 5 | 0 | 5 | 0 |
| Mvmt Flow | 0 | 24 | 60 | 37 | 15 | 0 | 161 | 0 | 157 | 2 | 115 | 6 |



| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1WBLn1 | SBL | SBT | SBR |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1467 | - | - | 633 | 363 | 1435 | - |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | 4 |  |  | $\ddagger$ |  |  | \$ |  |  | $\ddagger$ |  |
| Traffic Vol, veh/h | 19 | 181 | 4 | 5 | 146 | 20 | 25 | 24 | 6 | 30 | 7 | 13 |
| Future Vol, veh/h | 19 | 181 | 4 | 5 | 146 | 20 | 25 | 24 | 6 | 30 | 7 | 13 |
| Conflicting Peds, \#/hr | 2 | 0 | 4 | 4 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 6 | 2 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 8 |
| Mvmt Flow | 21 | 201 | 4 | 6 | 162 | 22 | 28 | 27 | 7 | 33 | 8 | 14 |



| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 1.4 |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL | SBR |
| Lane Configurations |  | $\uparrow$ | F |  | Mr |  |
| Traffic Vol, veh/h | 6 | 36 | 30 | 49 | 13 | 3 |
| Future Vol, veh/h | 6 | 36 | 30 | 49 | 13 | 3 |
| Conflicting Peds, \#/hr | 4 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | - | 0 | 0 | - | 0 | - |
| Grade, \% | - | 0 | 0 | - | 0 | - |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 |
| Heavy Vehicles, $\%$ | 0 | 2 | 4 | 1 | 0 | 0 |
| Mvmt Flow | 7 | 40 | 34 | 55 | 15 | 3 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.6 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | * |  |  | $\uparrow$ |  |  | * |  |  | $\ddagger$ |  |
| Traffic Vol, veh/h | 8 | 145 | 4 | 3 | 150 | 12 | 11 | 19 | 1 | 23 | 12 | 16 |
| Future Vol, veh/h | 8 | 145 | 4 | 3 | 150 | 12 | 11 | 19 | 1 | 23 | 12 | 16 |
| Conflicting Peds, \#/hr | 4 | 0 | 27 | 27 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 3 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 0 | 3 | 50 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mvmt Flow | 9 | 158 | 4 | 3 | 163 | 13 | 12 | 21 | 1 | 25 | 13 | 17 |





| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 4.1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations |  | ¢ |  |  | \$ |  |  | ¢ |  |  | \$ |  |  |
| Traffic Vol, veh/h | 6 | 107 | 2 | 5 | 125 | 34 | 19 | 49 | 3 | 33 | 5 | 9 |  |
| Future Vol, veh/h | 6 | 107 | 2 | 5 | 125 | 34 | 19 | 49 | 3 | 33 | 5 | 9 |  |
| Conflicting Peds, \#/hr | 3 | 0 | 6 | 6 | 0 | 3 | 2 | 0 | 2 | 2 | 0 | 2 |  |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized | - | - | None |  |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | ${ }^{-}$ | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 |  |
| Heavy Vehicles, \% | 0 | 3 | 0 | 0 | 3 | 0 | 6 | 10 | 0 | 3 | 0 | 0 |  |
| Mumt Flow | 8 | 145 | 3 | 7 | 169 | 46 | 26 | 66 | 4 | 45 | 7 | 12 |  |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.7 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations |  | ¢ |  |  | $\uparrow$ |  |  |  |  |  | $\uparrow$ |  |  |
| Traffic Vol, veh/h | 4 | 79 | 61 | 95 | 163 | 8 | 0 | 0 | 0 | 4 | 25 | 1 |  |
| Future Vol, veh/h | 4 | 79 | 61 | 95 | 163 | 8 | 0 | 0 | 0 | 4 | 25 | 1 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized | - | - | None | - | - | None | - | - | None | . | - | None |  |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 |  |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 |  |
| Heavy Vehicles, \% | 0 | 4 | 3 | 5 | 0 | 0 | 2 | 2 | 2 | 0 | 4 | 0 |  |
| Mvmt Flow | 5 | 104 | 80 | 125 | 214 | 11 | 0 | 0 | 0 | 5 | 33 | 1 |  |




| Major/Minor | Major1 |  | Major2 |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 217 | 0 | 0 | 0 | 229 | 160 |
| Stage 1 | - | - | - - | - | 160 | - |
| Stage 2 | - |  | - - | - | 69 | - |
| Critical Hdwy | 4.1 |  | - - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 |  | - | - - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1365 | - | - - | - | 764 | 890 |
| Stage 1 | - | - | - - | - | 874 | - |
| Stage 2 | - | - | - | - | 959 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1364 | - | - - | - | 757 | 889 |
| Mov Cap-2 Maneuver | - | - | - - | - | 757 | - |
| Stage 1 | - | - | - - | - | 867 | - |
| Stage 2 | - | - | - - | - | 958 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | SB |  |
| HCM Control Delay, s | 1.1 |  | 0 |  | 9.8 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | EBL | EBT | WBT WBR SBLn1 |  |  |
| Capacity (veh/h) |  | 1364 | 4 | - | - | 776 |
| HCM Lane V/C Ratio |  | 0.006 | 6 | - | - | 0.027 |
| HCM Control Delay (s) |  | 7.7 | 7 | - | - | 9.8 |
| HCM Lane LOS |  | A | A A | - | - | A |
| HCM 95th \%tile Q(veh) |  | 0 | - - | - | - | 0.1 |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 6.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\dagger$ |  |  | 4 |  |  | ¢ |  |  | $\dagger$ |  |
| Traffic Vol, veh/h | 0 | 16 | 23 | 29 | 27 | 0 | 97 | 86 | 0 | 0 | 180 | 1 |
| Future Vol, veh/h | 0 | 16 | 23 | 29 | 27 | 0 | 97 | 86 | 0 | 0 | 180 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control St | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 0 | 6 | 0 | 4 | 0 | 8 | 0 | 3 | 100 |
| Mvmt Flow | 0 | 26 | 38 | 48 | 44 | 0 | 159 | 141 | 0 | 0 | 295 | 2 |



| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1WBLn1 | SBL | SBT | SBR |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1253 | - | - | 457 | 265 | 1455 | - |
| HCM Lane V/C Ratio | 0.127 | - | - | 0.14 | 0.346 | - | - |
| HCM Control Delay (s) | 8.3 | 0 | - | 14.2 | 25.6 | 0 | - |
| HCM Lane LOS | A | A | - | B | D | A | - |
| HCM 95th \%tile Q(veh) | 0.4 | - | - | 0.5 | 1.5 | 0 | - |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | 4 |  |  | * |  |  | \$ |  |  | $\ddagger$ |  |
| Traffic Vol, veh/h | 21 | 179 | 4 | 2 | 126 | 30 | 22 | 76 | 6 | 35 | 18 | 14 |
| Future Vol, veh/h | 21 | 179 | 4 | 2 | 126 | 30 | 22 | 76 | 6 | 35 | 18 | 14 |
| Conflicting Peds, \#/hr | 4 | 0 | 27 | 27 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 3 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 |
| Heavy Vehicles, \% | 0 | 2 | 0 | 0 | 2 | 2 | 3 | 5 | 0 | 1 | 7 | 0 |
| Mvmt Flow | 25 | 211 | 5 | 2 | 148 | 35 | 26 | 89 | 7 | 41 | 21 | 16 |



HCM 6th TWSC
Dutchess Shepherd LLC; 123-020

2: S. Parsonage St/N. Parsonage St \& E. Market St
NB 2025_School Dismissal Peak Hour

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.5 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | \& |  |  | \& |  |  |  |  |  | \& |  |
| Traffic Vol, veh/h | 2 | 169 | 49 | 28 | 157 | 9 | 0 | 0 | 0 | 8 | 28 | 1 |
| Future Vol, veh/h | 2 | 169 | 49 | 28 | 157 | 9 | 0 | 0 | 0 | 8 | 28 | 1 |
| Conflicting Peds, \#/hr | 10 | 0 | 3 | 3 | 0 | 10 | 0 | 0 | 0 | 7 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |
| Heavy Vehicles, \% | 0 | 2 | 4 | 11 | 2 | 0 | 0 | 2 | 2 | 6 | 0 | 0 |
| Mvmt Flow | 2 | 172 | 50 | 29 | 160 | 9 | 0 | 0 | 0 | 8 | 29 | 1 |



| Minor Lane/Major Mvmt | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1396 | - | - | 1292 | - | - |
| HCM Lane V/C Ratio | 0.001 | - | -0.022 | - | -0.067 |  |
| HCM Control Delay (s) | 7.6 | 0 | - | 7.8 | 0 | - |
| HCM Lane LOS | A | A | - | A | A | - |
| HCM 95th \%ttile Q(veh) | 0 | - | - | 0.1 | - | - |


|  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |



HCM 6th TWSC
Dutchess Shepherd LLC; 123-020

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.9 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\dagger$ |  |  | $\uparrow$ |  |  | * |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 0 | 30 | 51 | 31 | 23 | 0 | 136 | 0 | 133 | 2 | 98 | 5 |
| Future Vol, veh/h | 0 | 30 | 51 | 31 | 23 | 0 | 136 | 0 | 133 | 2 | 98 | 5 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control S | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 |
| Heavy Vehicles, \% | 0 | 10 | 6 | 3 | 0 | 0 | 2 | 0 | 5 | 0 | 5 | 0 |
| Mvmt Flow | 0 | 36 | 61 | 37 | 27 | 0 | 162 | 0 | 158 | 2 | 117 | 6 |


| Major/Minor | Minor2 | Minor1 |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Conflicting Flow All | - | 606 | 120 | 576 | 530 | - | 123 | 0 | 0 | 158 | 0 |
| $\quad$ Stage 1 | - | 124 | - | 403 | 403 | - | - | - | - | - | - |
| $\quad$ Stage 2 | - | 482 | - | 173 | 127 | - | - | - | - | - | - |


| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1WBLn1 | SBL | SBT | SBR |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1464 | - | - | 575 | 359 | 1434 | - |




| Intersection <br> Int Delay, s/veh 1.2 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Movement E | EBL | EBT | WBT | WBR | SBL |  |  |
| Lane Configurations |  | * | 个 |  | * |  |  |
| Traffic Vol, veh/h | 6 | 46 | 40 | 49 | 13 | 3 | 3 |
| Future Vol, veh/h | 6 | 46 | 40 | 49 | 13 | 3 | 3 |
| Conflicting Peds, \#/hr | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Stop | Stop |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | - | - | - | - | 0 | - | - |
| Veh in Median Storage, \# | \# | 0 | 0 | - | 0 | - | - |
| Grade, \% | - | 0 | 0 | - | 0 | - | - |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 |  |
| Heavy Vehicles, \% | 0 | 2 | 4 | 1 | 0 | 0 | 0 |
| Mvmt Flow | 7 | 52 | 45 | 55 | 15 | 3 | 3 |


| Major/Minor | Major1 |  | Major2 |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 104 | 0 | - - | 0 | 143 | 77 |
| Stage 1 | - | - | - - | - | 77 | - |
| Stage 2 | - | - | - - | - | 66 | - |
| Critical Hdwy | 4.1 | - | - - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1500 | - | - - | - | 854 | 990 |
| Stage 1 | - | - | - - | - | 951 | - |
| Stage 2 | - | - | - - | - | 962 | - |
| Platoon blocked, \% |  | - | - - | - |  |  |
| Mov Cap-1 Maneuver | 1494 | - | - - | - | 843 | 986 |
| Mov Cap-2 Maneuver | - | - | - - | - | 843 | - |
| Stage 1 | - | - | - - | - | 942 | - |
| Stage 2 | - | - | - - | - | 958 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | SB |  |
| HCM Control Delay, s | 0.9 |  | 0 |  | 9.2 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | EBL | EBT | WBT WBR SBLn1 |  |  |
| Capacity (veh/h) |  | 1494 | 析 | - | - | 867 |
| HCM Lane V/C Ratio |  | 0.005 | 5 | - | - | 0.021 |
| HCM Control Delay (s) |  | 7.4 | 0 | - | - | 9.2 |
| HCM Lane LOS |  | A | A | - | - | A |
| HCM 95th \%tile Q(veh) |  | 0 | - - | - | - | 0.1 |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.5 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | ¢ |  |  | $\leqslant$ |  |  | \& |  |  | * |  |
| Traffic Vol, veh/h | 8 | 153 | 4 | 3 | 157 | 12 | 11 | 20 | 1 | 23 | 12 | 16 |
| Future Vol, veh/h | 8 | 153 | 4 | 3 | 157 | 12 | 11 | 20 | 1 | 23 | 12 | 16 |
| Conflicting Peds, \#/hr | 4 | 0 | 27 | 27 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 3 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# |  | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 0 | 3 | 50 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mvmt Flow | 9 | 166 | 4 | 3 | 171 | 13 | 12 | 22 | 1 | 25 | 13 | 17 |



| Intersection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.6 |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL |  |
| Lane Configurations |  | $\uparrow$ | $\dagger$ |  | * |  |
| Traffic Vol, veh/h | 2 | 31 | 35 | 30 | 18 | 1 |
| Future Vol, veh/h | 2 | 31 | 35 | 30 | 18 | 1 |
| Conflicting Peds, \#/hr | 5 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | \# - | 0 | 0 | - | 0 | - |
| Grade, \% | - | 0 | 0 | - | 0 | - |
| Peak Hour Factor | 71 | 71 | 71 | 71 | 71 | 71 |
| Heavy Vehicles, \% | 0 | 2 | 1 | 1 | 4 | 0 |
| Mvmt Flow | 3 | 44 | 49 | 42 | 25 | 1 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 4.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | * |  |  | \& |  |  | \$ |  |  | 4 |  |
| Traffic Vol, veh/h | 6 | 107 | 3 | 5 | 125 | 34 | 21 | 50 | 4 | 33 | 5 | 9 |
| Future Vol, veh/h | 6 | 107 | 3 | 5 | 125 | 34 | 21 | 50 | 4 | 33 | 5 | 9 |
| Conflicting Peds, \#/hr | 3 | 0 | 6 | 6 | 0 | 3 | 2 | 0 | 2 | 2 | 0 | 2 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 |
| Heavy Vehicles, \% | 0 | 3 | 0 | 0 | 3 | 0 | 6 | 10 | 0 | 3 | 0 | 0 |
| Mvmt Flow | 8 | 145 | 4 | 7 | 169 | 46 | 28 | 68 | 5 | 45 | 7 | 12 |





| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.9 |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL | SBR |
| Lane Configurations |  | -1 | F |  | Mr |  |
| Traffic Vol, veh/h | 5 | 29 | 59 | 66 | 10 | 2 |
| Future Vol, veh/h | 5 | 29 | 59 | 66 | 10 | 2 |
| Conflicting Peds, \#/hr | 1 | 0 | 0 | 1 | 1 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | - | 0 | 0 | - | 0 | - |
| Grade, \% | - | 0 | 0 | - | 0 | - |
| Peak Hour Factor | 58 | 58 | 58 | 58 | 58 | 58 |
| Heavy Vehicles, $\%$ | 0 | 4 | 2 | 8 | 0 | 0 |
| Mvmt Flow | 9 | 50 | 102 | 114 | 17 | 3 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 6.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\hat{\dagger}$ |  |  | $\uparrow$ |  |  | 4 |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 0 | 16 | 23 | 29 | 27 | 0 | 97 | 86 | 0 | 0 | 180 | 1 |
| Future Vol, veh/h | 0 | 16 | 23 | 29 | 27 | 0 | 97 | 86 | 0 | 0 | 180 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 | 61 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 0 | 6 | 0 | 4 | 0 | 8 | 0 | 3 | 100 |
| Mvmt Flow | 0 | 26 | 38 | 48 | 44 | 0 | 159 | 141 | 0 | 0 | 295 | 2 |





| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.1 |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | Mr |  |  | $\neq$ | $\uparrow$ |  |
| Traffic Vol, veh/h | 1 | 0 | 0 | 73 | 13 | 0 |
| Future Vol, veh/h | 1 | 0 | 0 | 73 | 13 | 0 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, \# \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 58 | 58 | 58 | 58 | 58 | 58 |
| Heavy Vehicles, $\%$ | 0 | 0 | 0 | 7 | 0 | 0 |
| Mvmt Flow | 2 | 0 | 0 | 126 | 22 | 0 |



Dutchess Shepherd LLC; 123-020





Dutchess Shepherd LLC; 123-020


| Major/Minor M | Major1 |  | Major2 |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 109 | 0 | - | 0 | 168 | 109 |
| Stage 1 | - | - | - | - | 109 | - |
| Stage 2 | - | - | - | - | 59 | - |
| Critical Hdwy | 4.1 | - | - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1494 | - | - | - | 827 | 950 |
| Stage 1 | - | - | - | - | 921 | - |
| Stage 2 | - | - | - | - | 969 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1494 | - | - | - | 827 | 950 |
| Mov Cap-2 Maneuver | - | - | - | - | 827 | - |
| Stage 1 | - | - | - | - | 921 | - |
| Stage 2 | - | - | - | - | 969 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | SB |  |
| HCM Control Delay, s | 0 |  | 0 |  | 8.8 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | EBL | EBT | WBT | WBR SBLn1 |  |
| Capacity (veh/h) |  | 1494 | - | - | - | 950 |
| HCM Lane V/C Ratio |  | - | - | - | - | 0.002 |
| HCM Control Delay (s) |  | 0 | - | - | - | 8.8 |
| HCM Lane LOS |  | A | - | - | - | A |
| HCM 95th \%tile Q(veh) |  | 0 | - | - | - | 0 |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | 4 |  |  | * |  |  | \$ |  |  | $\ddagger$ |  |
| Traffic Vol, veh/h | 21 | 179 | 6 | 3 | 126 | 30 | 23 | 76 | 6 | 35 | 19 | 14 |
| Future Vol, veh/h | 21 | 179 | 6 | 3 | 126 | 30 | 23 | 76 | 6 | 35 | 19 | 14 |
| Conflicting Peds, \#/hr | 4 | 0 | 27 | 27 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 3 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 |
| Heavy Vehicles, \% | 0 | 2 | 0 | 0 | 2 | 2 | 3 | 5 | 0 | 1 | 7 | 0 |
| Mvmt Flow | 25 | 211 | 7 | 4 | 148 | 35 | 27 | 89 | 7 | 41 | 22 | 16 |



HCM 6th TWSC
Dutchess Shepherd LLC; 123-020

2: S. Parsonage St/N. Parsonage St \& E. Market St
Build 2025_School Dismissal Peak Hour

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.5 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | \& |  |  | $\uparrow$ |  |  |  |  |  | \& |  |
| Traffic Vol, veh/h | 2 | 169 | 49 | 28 | 158 | 9 | 0 | 0 | 0 | 8 | 28 | 1 |
| Future Vol, veh/h | 2 | 169 | 49 | 28 | 158 | 9 | 0 | 0 | 0 | 8 | 28 | 1 |
| Conflicting Peds, \#/hr | 10 | 0 | 3 | 3 | 0 | 10 | 0 | 0 | 0 | 7 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |
| Heavy Vehicles, \% | 0 | 2 | 4 | 11 | 2 | 0 | 0 | 2 | 2 | 6 | 0 | 0 |
| Mvmt Flow | 2 | 172 | 50 | 29 | 161 | 9 | 0 | 0 | 0 | 8 | 29 | 1 |



| Intersection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 1.2 |  |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL |  |
| Lane Configurations |  | $\uparrow$ | F |  | * |  |
| Traffic Vol, veh/h | 7 | 58 | 66 | 99 | 22 | 3 |
| Future Vol, veh/h | 7 | 58 | 66 | 99 | 22 | 3 |
| Conflicting Peds, \#/hr | 9 | 0 | 0 | 9 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | \# | 0 | 0 | - | 0 | - |
| Grade, \% | - | 0 | 0 | - | 0 | - |
| Peak Hour Factor | 72 | 72 | 72 | 72 | 72 | 72 |
| Heavy Vehicles, \% | 13 | 5 | 0 | 4 | 6 | 0 |
| Mvmt Flow | 10 | 81 | 92 | 138 | 31 | 4 |


| Major/Minor | Major1 | Major2 |  | Minor2 |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Conflicting Flow All | 239 | 0 | - | 0 | 271 | 170 |
| $\quad$ Stage 1 | - | - | - | - | 170 | - |
| $\quad$ Stage 2 | - | - | - | - | 101 | - |
| Critical Hdwy | 4.23 | - | - | - | 6.46 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.46 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.46 | - |
| Follow-up Hdwy | 2.317 | - | - | -3.554 | 3.3 |  |
| Pot Cap-1 Maneuver | 1266 | - | - | - | 710 | 879 |
| $\quad$ Stage 1 | - | - | - | - | 850 | - |
| $\quad$ Stage 2 | - | - | - | - | 913 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1255 | - | - | - | 692 | 871 |
| Mov Cap-2 Maneuver | - | - | - | - | 692 | - |
| $\quad$ Stage 1 | - | - | - | - | 836 | - |
| $\quad$ Stage 2 | - | - | - | - | 905 | - |
|  |  |  |  |  |  |  |
| Approach | EB | WB | SB |  |  |  |
| HCM Control Delay, s | 0.8 | 0 | 10.3 |  |  |  |

HCM LOS B

| Minor Lane/Major Mvmt | EBL | EBT | WBT | WBR SBLn1 |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1255 | - | - | -709 |  |
| HCM Lane V/C Ratio | 0.008 | - | - | -0.049 |  |
| HCM Control Delay (s) | 7.9 | 0 | - | -10.3 |  |
| HCM Lane LOS | A | A | - | - | B |
| HCM 95th \%ttile Q(veh) | 0 | - | - | - | 0.2 |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 5.9 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | $\hat{\dagger}$ |  |  | $\uparrow$ |  |  | 4 |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 0 | 30 | 51 | 31 | 23 | 0 | 136 | 0 | 133 | 2 | 98 | 5 |
| Future Vol, veh/h | 0 | 30 | 51 | 31 | 23 | 0 | 136 | 0 | 133 | 2 | 98 | 5 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control Stap | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 | 84 |
| Heavy Vehicles, \% | 0 | 10 | 6 | 3 | 0 | 0 | 2 | 0 | 5 | 0 | 5 | 0 |
| Mvmt Flow | 0 | 36 | 61 | 37 | 27 | 0 | 162 | 0 | 158 | 2 | 117 | 6 |



| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1WBLn1 | SBL | SBT | SBR |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 1464 | - | - | 575 | 359 | 1434 | - |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |



| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |



| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |




| Major/Minor | Major1 |  | Major2 |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 82 | 0 | - | 0 | 161 | 82 |
| Stage 1 | - | - | - | - | 82 | - |
| Stage 2 | - | - | - | - | 79 | - |
| Critical Hdwy | 4.1 | - | - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1528 | - | - | - | 835 | 983 |
| Stage 1 | - | - | - | - | 946 | - |
| Stage 2 | - | - | - | - | 949 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1528 | - | - | - | 834 | 983 |
| Mov Cap-2 Maneuver | - | - | - | - | 834 | - |
| Stage 1 | - | - | - | - | 945 | - |
| Stage 2 | - | - | - | - | 949 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | SB |  |
| HCM Control Delay, s | 0.1 |  | 0 |  | 0 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | EBL | EBT WBT |  | WBR SBLn1 |  |
| Capacity (veh/h) |  | 1528 | - | - | - | - |
| HCM Lane V/C Ratio |  | 0.001 | - | - | - | - |
| HCM Control Delay (s) |  | 7.4 | 0 | - | - | 0 |
| HCM Lane LOS |  | A | A | - | - | A |
| HCM 95th \%tile Q(veh) |  | 0 | - | - | - | - |



| Major/Minor | Major1 |  | Major2 |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 82 | 0 | - | 0 | 163 | 82 |
| Stage 1 | - | - | - | - | 82 | - |
| Stage 2 | - | - | - | - | 81 | - |
| Critical Hdwy | 4.1 | - | - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1528 | - | - | - | 832 | 983 |
| Stage 1 | - | - | - | - | 946 | - |
| Stage 2 | - | - | - | - | 947 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1528 | - | - | - | 831 | 983 |
| Mov Cap-2 Maneuver | - | - | - | - | 831 | - |
| Stage 1 | - | - | - | - | 945 | - |
| Stage 2 | - | - | - | - | 947 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | SB |  |
| HCM Control Delay, s | 0.1 |  | 0 |  | 0 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | EBL | EBT WBT |  | WBR SBLn1 |  |
| Capacity (veh/h) |  | 1528 | - | - | - | - |
| HCM Lane V/C Ratio |  | 0.001 | - | - | - | - |
| HCM Control Delay (s) |  | 7.4 | 0 | - | - | 0 |
| HCM Lane LOS |  | A | A | - | - | A |
| HCM 95th \%tile Q(veh) |  | 0 | - | - | - | - |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | 4 |  |  | * |  |  | \$ |  |  | $\ddagger$ |  |
| Traffic Vol, veh/h | 19 | 188 | 6 | 6 | 153 | 20 | 26 | 24 | 6 | 30 | 8 | 13 |
| Future Vol, veh/h | 19 | 188 | 6 | 6 | 153 | 20 | 26 | 24 | 6 | 30 | 8 | 13 |
| Conflicting Peds, \#/hr | 2 | 0 | 4 | 4 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 2 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 6 | 2 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 8 |
| Mvmt Flow | 21 | 209 | 7 | 7 | 170 | 22 | 29 | 27 | 7 | 33 | 9 | 14 |



| Intersection <br> Int Delay, s/veh 1.3 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Movement E | EBL | EBT | WBT | WBR | SBL |  |  |
| Lane Configurations |  | * | 个 |  | * |  |  |
| Traffic Vol, veh/h | 7 | 46 | 40 | 49 | 13 | 4 | 4 |
| Future Vol, veh/h | 7 | 46 | 40 | 49 | 13 | 4 | 4 |
| Conflicting Peds, \#/hr | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Stop | Stop |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | - | - | - | - | 0 | - | - |
| Veh in Median Storage, \# | \# | 0 | 0 | - | 0 | - | - |
| Grade, \% | - | 0 | 0 | - | 0 | - | - |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 |  |
| Heavy Vehicles, \% | 0 | 2 | 4 | 1 | 0 | 0 | 0 |
| Mvmt Flow | 8 | 52 | 45 | 55 | 15 | 4 | 4 |


| Major/Minor | Major1 |  | Major2 |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 104 | 0 | - | 0 | 145 | 77 |
| Stage 1 | - | - | - | - | 77 | - |
| Stage 2 | - | - | - | - | 68 | - |
| Critical Hdwy | 4.1 | - | - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1500 | - | - | - | 852 | 990 |
| Stage 1 | - | - | - | - | 951 | - |
| Stage 2 | - | - | - | - | 960 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1494 | - | - | - | 840 | 986 |
| Mov Cap-2 Maneuver | - | - | - | - | 840 | - |
| Stage 1 | - | - | - | - | 941 | - |
| Stage 2 | - | - | - | - | 956 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | SB |  |
| HCM Control Delay, s | 1 |  | 0 |  | 9.2 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | EBL | EBT | WBT WBR SBLn1 |  |  |
| Capacity (veh/h) |  | 1494 | - | - | - | 870 |
| HCM Lane V/C Ratio |  | 0.005 | - | - | - | 0.022 |
| HCM Control Delay (s) |  | 7.4 | 0 | - | - | 9.2 |
| HCM Lane LOS |  | A | A | - | - | A |
| HCM 95th \%tile Q(veh) |  | 0 |  | - | - | 0.1 |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0 |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | Mr |  |  | $\mathbf{A}$ | $\mathbf{F}$ |  |
| Traffic Vol, veh/h | 0 | 0 | 0 | 57 | 19 | 1 |
| Future Vol, veh/h | 0 | 0 | 0 | 57 | 19 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, $\#$ | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 |
| Heavy Vehicles, $\%$ | 0 | 0 | 0 | 1 | 0 | 0 |
| Mvmt Flow | 0 | 0 | 0 | 64 | 21 | 1 |



| Intersection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 0 |  |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |  |
| Lane Configurations | * |  |  | $\uparrow$ | $\dagger$ |  |  |
| Traffic Vol, veh/h |  | 0 | 0 | 57 | 18 | 1 |  |
| Future Vol, veh/h | 0 | 0 | 0 | 57 | 18 | 1 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control | Stop | Stop | Free | Free | Free | Free |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | 0 | - | - | - | - | - |  |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |  |
| Grade, \% | 0 | - | - | 0 | 0 | - |  |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 |  |
| Heavy Vehicles, \% | 0 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 0 | 0 | 0 | 64 | 20 | 1 |  |



| Intersection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 0.3 |  |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |  |
| Lane Configurations | * |  |  | $\uparrow$ | $\dagger$ |  |  |
| Traffic Vol, veh/h | 1 | 1 | 1 | 56 | 16 | 2 |  |
| Future Vol, veh/h | 1 | 1 | 1 | 56 | 16 | 2 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control | Stop | Stop | Free | Free | Free | Free |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | 0 | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# 0 | - | - | 0 | 0 | - |  |
| Grade, \% | 0 | - | - | 0 | 0 | - |  |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 |  |
| Heavy Vehicles, \% | 0 | 0 | 0 | 1 | 0 | 0 |  |
| Mvmt Flow | 1 | 1 | 1 | 63 | 18 | 2 |  |





Dutchess Shepherd LLC; 123-020

| Intersection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 0.1 |  |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL |  |  |
| Lane Configurations |  | $\uparrow$ | $\dagger$ |  | * |  |  |
| Traffic Vol, veh/h | 1 | 54 | 44 | 0 | 0 | 0 |  |
| Future Vol, veh/h | 1 | 54 | 44 | 0 | 0 | 0 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control | Free | Free | Free | Free | Stop | Stop |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | - | - | - | - | 0 | - |  |
| Veh in Median Storage, \# | \# - | 0 | 0 | - | 0 | - |  |
| Grade, \% | - | 0 | 0 | - | 0 | - |  |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 |  |
| Heavy Vehicles, \% | 0 | 1 | 4 | 0 | 2 | 2 |  |
| Mvmt Flow | 1 | 61 | 49 | 0 | 0 | 0 |  |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.6 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | \& |  |  | $\uparrow$ |  |  | 4 |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 8 | 153 | 5 | 3 | 157 | 12 | 13 | 20 | 2 | 23 | 12 | 16 |
| Future Vol, veh/h | 8 | 153 | 5 | 3 | 157 | 12 | 13 | 20 | 2 | 23 | 12 | 16 |
| Conflicting Peds, \#/hr | 4 | 0 | 27 | 27 | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 3 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 0 | 3 | 50 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Mvmt Flow | 9 | 166 | 5 | 3 | 171 | 13 | 14 | 22 | 2 | 25 | 13 | 17 |



| Intersection |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 1 | 1.8 |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL |  |
| Lane Configurations |  | $\uparrow$ | $\dagger$ |  | * |  |
| Traffic Vol, veh/h | 3 | 31 | 35 | 30 | 18 | 2 |
| Future Vol, veh/h | 3 | 31 | 35 | 30 | 18 | 2 |
| Conflicting Peds, \#/hr | 5 | 0 | 0 | 0 | 0 | 0 |
| Sign Control Fr | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | - | 0 | 0 | - | 0 | - |
| Grade, \% | - | 0 | 0 | - | 0 | - |
| Peak Hour Factor | 71 | 71 | 71 | 71 | 71 | 71 |
| Heavy Vehicles, \% | 0 | 2 | 1 | 1 | 4 | 0 |
| Mvmt Flow | 4 | 44 | 49 | 42 | 25 | 3 |



| Intersection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 0.2 |  |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |  |
| Lane Configurations | * |  |  | $\uparrow$ | $\dagger$ |  |  |
| Traffic Vol, veh/h | 1 | 0 | 0 | 34 | 20 | 0 |  |
| Future Vol, veh/h | 1 | 0 | 0 | 34 | 20 | 0 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control | Stop | Stop | Free | Free | Free | Free |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | 0 | - | - | - | - | - |  |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |  |
| Grade, \% | 0 | - | - | 0 | 0 | - |  |
| Peak Hour Factor | 71 | 71 | 71 | 71 | 71 | 71 |  |
| Heavy Vehicles, \% | 0 | 0 | 0 | 1 | 0 | 0 |  |
| Mvmt Flow | 1 | 0 | 0 | 48 | 28 | 0 |  |





| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.4 |  |  |  |  |  |
| Movement | EBL | EBR | NBL | NBT | SBT | SBR |
| Lane Configurations | MF |  |  | $\mathbf{4}$ | $\mathbf{7}$ |  |
| Traffic Vol, veh/h | 1 | 1 | 1 | 32 | 19 | 1 |
| Future Vol, veh/h | 1 | 1 | 1 | 32 | 19 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Free | Free | Free | Free |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | 0 | - | - | - | - | - |
| Veh in Median Storage, $\#$ | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 71 | 71 | 71 | 71 | 71 | 71 |
| Heavy Vehicles, \% | 0 | 0 | 1 | 0 | 0 | 0 |
| Mvmt Flow | 1 | 1 | 1 | 45 | 27 | 1 |



| Intersection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 0.1 |  |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL |  |  |
| Lane Configurations |  | $\uparrow$ | $\dagger$ |  | * |  |  |
| Traffic Vol, veh/h | 0 | 34 | 37 | 0 | 0 | 1 |  |
| Future Vol, veh/h | 0 | 34 | 37 | 0 | 0 | 1 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | - | - | - | - | 0 | - | - |
| Veh in Median Storage, \# | \# - | 0 | 0 | - | 0 | - | - |
| Grade, \% | - | 0 | 0 | - | 0 | - | - |
| Peak Hour Factor | 71 | 71 | 71 | 71 | 71 | 71 |  |
| Heavy Vehicles, \% | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| Mumt Flow | 0 | 48 | 52 | 0 | 0 | 1 | 1 |


| Major/Minor | Major1 |  | Major2 |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 52 | 0 | - | 0 | 100 | 52 |
| Stage 1 | - | - | - | - | 52 | - |
| Stage 2 | - | - | - | - | 48 | - |
| Critical Hdwy | 4.1 | - | - | - | 6.4 | 6.2 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.4 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.4 | - |
| Follow-up Hdwy | 2.2 | - | - | - | 3.5 | 3.3 |
| Pot Cap-1 Maneuver | 1567 | - | - | - | 904 | 1021 |
| Stage 1 | - | - | - | - | 976 | - |
| Stage 2 | - | - | - | - | 980 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1567 | - | - | - | 904 | 1021 |
| Mov Cap-2 Maneuver | - | - | - | - | 904 | - |
| Stage 1 | - | - | - | - | 976 | - |
| Stage 2 | - | - | - | - | 980 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | SB |  |
| HCM Control Delay, s | 0 |  | 0 |  | 8.5 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | EBL | EBT | WBT WBR SBLn1 |  |  |
| Capacity (veh/h) |  | 1567 | - | - | - | 1021 |
| HCM Lane V/C Ratio |  | - | - | - | - | 0.001 |
| HCM Control Delay (s) |  | 0 | - | - | - | 8.5 |
| HCM Lane LOS |  | A | - | - | - | A |
| HCM 95th \%tile Q(veh) |  | 0 | - | - | - | 0 |


| Intersection |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 0.1 |  |  |  |  |  |  |
| Movement | EBL | EBT | WBT | WBR | SBL |  |  |
| Lane Configurations |  | $\uparrow$ | $\dagger$ |  | * |  |  |
| Traffic Vol, veh/h | 0 | 34 | 38 | 0 | 0 | 1 |  |
| Future Vol, veh/h | 0 | 34 | 38 | 0 | 0 | 1 | 1 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |  |
| RT Channelized | - | None | - | None | - | None |  |
| Storage Length | - | - | - | - | 0 | - | - |
| Veh in Median Storage, \# | \# - | 0 | 0 | - | 0 | - | - |
| Grade, \% | - | 0 | 0 | - | 0 | - | - |
| Peak Hour Factor | 71 | 71 | 71 | 71 | 71 | 71 |  |
| Heavy Vehicles, \% | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| Mumt Flow | 0 | 48 | 54 | 0 | 0 | 1 | 1 |



## Exhibit C

Village of Rhinebeck<br>76 East Market Street<br>Rhinebeck NY 12572<br>c/o:<br>Ms. Brandee Nelson<br>Tighe \& Bond<br>47 West Market Street<br>Rhinebeck NY 12572

6 Mulberry Street (the Project)
Rhinebeck NY 12572
MEMO: Construction Noise
Hours of Operation

## Construction Hours:

Residential Construction shall be allowed between 7 AM and 6 PM on weekdays. Work may take place at other times only if the site has a construction variance/permit from the Village of Rhinebeck.

## Unlawful Noises:

Building Construction:
Operating or permitting the operation of any tool or equipment used in construction drilling or demolition work, including excavation, and the alteration or repair of any building between the hours of 10:00 p.m. and 7:00 a.m., except in the case of an emergency or the interests of public safety.

Refuse Compacting:
The operation of a refuse compacting vehicle in the process of compacting or collecting refuse contained in a dumpster or similar receptacle between the hours of 10:00 p.m. and 7:00 a.m. or the operation of a refuse compacting vehicle in the process of compacting or collecting refuse contained in individual garbage cans between the hours of 10:00 p.m. and 7:00 a.m.

Heavy Equipment:
The operation of any pile driver, bulldozer, pneumatic hammer, grinder, or other construction equipment which creates unreasonable noise, except between 7:00 a.m. and 6:00 p.m. on weekdays, and between 10:00 a.m. and 6:00 p.m. Saturdays, except as may otherwise be permitted by the Building Inspector in cases of urgent necessity in the interest of public safety. The operation or use of such heavy equipment on Sundays and legal holidays is prohibited.

Machinery:
The operation of any machinery, equipment, pump, fan, air-conditioning apparatus, or other mechanical device in such a manner as to create unreasonable noise.

Loading and Unloading:
The loading or unloading of any materials, equipment, or the handling of bales, boxes, crates, containers, or similar objects so as to create unreasonable noise.

## Vibration:

The operating or permitting the operation of any device that creates vibration which is above the vibration perception threshold of an individual beyond the property where the source is located. For the purposes of this section, "vibration perception threshold" means the minimum ground- or structure-borne vibrational motion necessary to cause a normal person to be aware of the vibration by such direct means as, but not limited to, sensation by touch or visual observation of moving objects.

## Presumptive Evidence:

It shall be prima facie evidence that an act is in violation of this memo when a sound-level meter indicates that the decibel level of a particular activity is in excess of 60 dBA between the hours of 7:00 a.m. and 9:00 p.m. and 50 dBA between the hours of 9:00 p.m. and 7:00 a.m. measured at a distance of 50 feet from the source of the noise. All measurements will be made on the A-weighted sound level of a sound-level meter with a slow response.

## Exempt Sounds:

Sounds which are authorized as exempt from the above described Unlawful Noises, by resolution of the Village of Rhinebeck Board of Trustees because said noise, although otherwise causing unreasonable noise, would be generated from a non public-works project where the Village of Rhinebeck Board of Trustees, for good cause shown, has determined that such waiver would be protective of the general health, safety and welfare of the citizenry of the Village of Rhinebeck and/or a necessary consequence of executing the approved and permitted Project in a reasonable and efficient manner. However, should noise become a problem, the Village of Rhinebeck Board of Trustees may rescind or modify the waiver.

Respectfully,

## David Ruff AIA, RA, NCARB

NAVA Partners LLC
Dutchess Shepherd LLC

## Exhibit D



## Exhibit E

# Phase 1A Literature Search and Sensitivity Assessment \& Phase 1B Archaeological Field Reconnaissance Survey Dutchess Shepherd Bulkeley School Project 

6 MULBERRY Street<br>Village of Rhinebeck, Dutchess County, New York

PREPARED FOR:
Dutchess Shepherd LLC
265 Market Lane
Clinton Corners, New York, 12514

Management Summary

SHPO Project Review Number (if available):
Involved State and Federal Agencies: SEQR
Phase of Survey: Phase 1A Literature Search \& Sensitivity Assessment \& Phase 1B Archaeological Field Reconnaissance Survey

Location Information:
Location: 6 Mulberry Street
Minor Civil Division: Village of Rhinebeck
County: Dutchess County
USGS Quadrangle: 2019 Kingston, East, NY Quadrangle
Survey Area (Metric \& English)
Length: 110' ${ }^{\prime} \mathbf{3 3 . 5} \mathbf{~ m}$
Width: $\mathbf{6 2}{ }^{\circ} / \mathbf{1 8 . 9} \mathbf{~ m}$
Number of Acres Surveyed: $\pm \mathbf{1 . 4 4}$ ( $\mathbf{0 . 5 8}$ hectares)
Archaeological Survey Overview
Number \& Interval of Shovel Tests: 15 completed @ 50' ( $\mathbf{1 5 ~ m}$ ) intervals
Number \& Size of Units: N/A
Width of Plowed Strips: N/A
Surface Survey Transect Interval: N/A
Results of Archaeological Survey
Number \& name of precontact sites identified: $\mathbf{0}$.
Number \& name of historic sites identified: 0
Number \& name of sites recommended for Phase II/Avoidance: $\mathbf{0}$.
Report Author (s): Franco Zani Jr., Beth Selig, MA, RPA.
HCS Project Number: 23-02-674
Date of Report: March 20, 2023

## Table of Contents

List of FiguresList of TablesList of Photographs
I.Phase 1A Literature Search and Sensitivity Assessment ..... 1
A. Dutchess Shepherd Bulkeley Schoolhouse Project Description ..... 1
B. Environmental Conditions ..... 4

- Ecology ..... 4
- Geology ..... 4
- Drainage ..... 4
- SOILS ..... 4
C. Recorded Archaeological Sites and Surveys ..... 8
- Previously Recorded Archaeological Sites ..... 8
- Previously Completed Archaeological Surveys ..... 9
D. Precontact Context ..... 9
E. Historic Context ..... 10
- History of Bulkeley School ..... 11
- Cartographic Research. ..... 13
F. National Register Eligible/Listed Sites ..... 27
G. Assessment of Sensitivity for Cultural Resources ..... 27
- Precontact Sensitivity ..... 27
- Historic Sensitivity ..... 27
H. Summary and Recommendations ..... 27
II.PHASE 1B Archaeological Field Reconnaissance Survey ..... 28
I. Archaeological Sur vey Methodology ..... 28
J. Archaeological Survey Results ..... 28
K. Summary and Recommendations ..... 29
L. Bibliography ..... 34


## List of Figures

Figure 1: 2019 USGS Topographical Map. Kingston East, NY Quadrangles. 7.5 Minute Series. (Source:
USGS.gov.) Scale: $1=1,000^{\prime}$ ..... 2
Figure 2: 2021 Aerial image showing the location of the Project APE (Source: New York GIS Clearinghouse). Scale: $1^{"}=150$ '. ..... 3
Figure 3: Aerial Image showing soil units within the Project Parcel. (Source: Natural Resources Conservation Service.) Scale: $1 "=150$ ' ..... 5
Figure 4: Image of the Bulkeley School House. Circa 1870. ..... 12
Figure 5: Image of the Bulkeley School with southern addition. Circa 1908. (Source Morse 1908) ..... 12
Figure 6: Post card of the school building c. 1928. (Source: New York Heritage digital collections). ..... 13
Figure 7: 1850 J.C. Sidney Atlas of Dutchess County, New York. (Source: Library of Congress) Scale: 1"$=1000^{\prime}$14
Figure 8: 1858 J. E. Gillette. Map of Dutchess County, New York. (Source: Library of Congress) Scale: $1 "=200$ ' ..... 15
Figure 9: 1867 F.W. Beers. Village of Rhinebeck, Atlas of the County of Dutchess, N. Y. (Source: David Rumsey Cartography Associates) Scale: 1" $=335$, ..... 16
Figure 10: 1886 Sanborn Fire Insurance Map. Village of Rhinebeck N. Y. Scale: 1" $=112$ '. (Source: Libraryof Congress) Scale: 1" $=112^{\prime}$17
Figure 11: 1890 L.R. Burleigh. Birds Eye View of the Village of Rhinebeck N. Y. (Source: Library of Congress) Scale: $1 "=75$ ' ..... 18
Figure 12: 1905 Sanborn Fire Insurance Map. Village of Rhinebeck N. Y. (Source: Library of Congress) Scale: $1^{"}=125^{\prime}$. ..... 19
Figure 13: 1912 Sanborn Fire Insurance Map. Village of Rhinebeck N. Y. (Source: Library of Congress) Scale: 1" $=1245^{\prime}$ ..... 20
Figure 14: 1940 Aerial image. Village f Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: 1" $=130^{\prime}$ ..... 21
Figure 15: 1955 Aerial image. Village of Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: 1" $=120^{\prime}$ ..... 22
Figure 16: 1970 Aerial image. Village of Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: 1" $=115$ ' ..... 23
Figure 17; 2004 Aerial image. Village of Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: 1" $=135$ '.
Figure 18: Dutchess Shepherd Bulkeley School. Phase 1B Archaeological Field Reconnaissance Survey. Scale 1" = 200' ..... 33

## LIST OF TABLES

Table 1: Soil Unit Descriptions (Natural Resources Conservation Service) ..... 5
Table 2: Previously Recorded Archaeological Sites within one mile-radius ..... 8
List of Photographs
Photo 1: The former Bulkeley School is located in the center of the Project Parcel. View to the northwest. ..... 6
Photo 2: The southern portion of the Parcel contains an asphalt covered parking lot. View to the northwest. ..... 6
Photo 3: Buried utilities and a playground are in the western portion of the parcel. View to the south ..... 7
Photo 4: Buried utilities and equipment are located on the northern side of the school building. View to the southwest ..... 7
Photo 5: The northern side of the building is constructed of cinderblock, and painted red. View to the south. ..... 25
Photo 6: Access points on the eastern side of the building are below grade. View to the south ..... 25
Photo 7: View to the south from the northern boundary of the Project Parcel. ..... 26
Photo 8: The northern portion of the parcel consists of mown lawns. View to the north ..... 26
Photo 9: Transects 1 and 2 began near East Market Street. View to the west. ..... 30
Photo 10: The landscape on the southern side of the school building is covered with asphalt. View to the north. ..... 30
Photo 11: View to the southeast from the western side of the school building. ..... 31
Photo 12: A shed is located in the northwestern portion of the Project Parcel. View to the north, of thelocation of TR 531
Photo 13: Stormwater drains are located in the parking area, in the southern portion of the Parcel. View to the west. ..... 32
Photo 14: Deep tests, completed by the owner for proposed septic systems show extensive disturbance and building debris to the north of the school building. ..... 32

## I. Phase 1A Literature Search and Sensitivity Assessment

## A. Dutchess Shepherd Bulkeley Schoolhouse Project Description

In February of 2023, Hudson Cultural Services (HCS) was retained by Dutchess Shepherd LLC, to complete a Phase 1A Literature Search and Sensitivity Assessment and Phase 1B Archaeological Field Reconnaissance Survey of the proposed Dutchess Shepherd Bulkeley Schoolhouse Project, located at 6 Mulberry Street in the Village of Rhinebeck, Dutchess County, New York.

The purpose of the Phase 1 Cultural Resources Survey is to determine whether previously identified cultural resources (historic and archaeological sites) are located withing the boundaries of the proposed project, and evaluate the potential for previously unidentified cultural resources to be located within the boundaries of the Area of Potential Effect (APE). All work was completed in accordance with the Standards for Cultural Resource Investigations and the Curation of Archeological Collections published by the New York Archeological Council (NYAC) and recommended for use by New York State Office of Parks, Recreation and Historic Preservation (OPRHP). The report complies with New York State OPRHP's Phase 1 Archaeological Report Format Requirements, established in 2005.

The background research, as well as the cultural and environmental overviews, were completed by Franco Zani Jr, and Beth Selig, MA, RPA, President and Principal Investigator with HCS. Phase 1B testing was completed under the direction of Franco Zani Jr. and Beth Selig. A site visit was conducted by Beth Selig on February 22, 2023 to observe and photograph existing condition within the Project. The information gathered during the walkover reconnaissance is included in the relevant sections of this report.

The Proposed Dutchess Shepherd Bulkeley Schoolhouse Project in Rhinebeck (hereafter "the Project Parcel") is a $\pm 1.44$ acre $(0.58 \mathrm{~h})$ parcel in the Village of Rhinebeck. The Project Parcel is comprised of one large parcel which will be subdivided into five parcels as part of the overall project. The Parcel is bounded to the south by South Street, to the east by Mulberry Street, to the north by East Market Street and to the west by residential structures. The proposed undertaking consists of constructing residential structures with associated infrastructure. The existing school will be retained, and converted into apartments.

The Project Parcel is a vacant school, surrounded by lawns, parking lots, a playground and buried utilities. With the exception of the western boundary, a chain link fence encloses the property. The southern portion of the parcel is covered with asphalt.


Figure 1: 2019 USGS Topographical Map. Kingston East, NY Quadrangles. 7.5 Minute Series. (Source: USGS.gov.) Scale: $1=1,000$ '


Figure 2: 2021 Aerial image showing the location of the Project Parcel (Source: New York GIS Clearinghouse). Scale: $1 "=150$ '

## B. Environmental Conditions

The landscape within the Project Parcel is currently cleared, urban land that is maintained as lawn, with parking lots on the southern side of the school building. The elevation of the parcel is about $200^{\prime}$ ( 61 m ) Above Mean Sea Level (AMSL).

## Ecology

The Project APE lies within the Eastern Broadleaf Forest. This mountainous region is in the transition zone between the boreal spruce-fir forest to the north and the deciduous forest to the south. Growth form and species are very similar to those found to the north, but red spruce tends to replace white spruce (Bailey 1995; Bryce et al. 2010).

## Geology

The Project APE is located within the Hudson-Mohawk Lowlands, adjacent to the Catskill Mountains Physiographic Province. The Catskills rise considerably higher than the neighboring parts of the upland. Summit elevations exceed 2000' and some peaks are over 4000'. The mountainous character of the Catskills is due to the action of glaciers and streams carving deep valleys in the flat-lying, stratified sandstones and shales. These sedimentary stones are capped in the high areas with resistant conglomerates that are the bedrocks of the Catskills. The topography is controlled by the bedrock with steep valley sides being a normal occurrence. Minor landforms in the valleys are outwash, kames, kame moraines, deltas, alluvial flats and lacustrine plains. Upland deposits are predominantly glacial tills that are stony or contain flagstones. The only extensive lacustrine area is near Gilboa in Schoharie County. Soils on the other minor landforms are mostly water-laid deposits of granular material (Spectra 2004).

Specifically, the Project APE lies in the Northern Glaciated Shale and Slate Valleys. The Northern Glaciated Shale and Slate Valleys contain broad, irregular rolling to hilly valleys underlain by slaty shale and fine-grained sandstone covered by glacial drift. (Bryce et al. 2010). Escarpments of limestone in the east mark the descent into the Hudson Valley.

## Drainage

There are no water sources located within the boundaries of the parcel. Stormwater drains are located within the village streets, and the overall landscape generally drains to the xx to the Landsman Kill.

## Soils

Soil surveys provide a general characterization of the types and depths of soils that are found in an area. The characteristics of the soils within the Project Parcel have an important impact on the potential for the presence of cultural material, since the types of soils present affect the ability of an area to support human populations. The Soil Survey's mapped boundaries are considered approximate, as they generally correspond poorly to the actual boundaries of landforms and soil types within an area. The Natural Resources Conservation Service indicates that the soils within the Parcel are a mix of channery and gravelly silt loam, and urban land.


Figure 3: Aerial Image showing soil units within the Project Parcel. (Source: Natural Resources Conservation Service.) Scale: $1^{\prime \prime}=150^{\prime}$.

| Table 1: Soil Unit Descriptions (Natural Resources Conservation Service) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Map <br> Symbol | Map Unit <br> Name | Soil Horizons \& Texture | Slope | Drainage | Landform |
| DwC | Dutchess- <br> Cardigan complex, rolling, rocky | H1 - 0 to 8 inches: silt loam <br> H2 - 8 to 28 inches: silt loam <br> H3-28 to 86 inches: channery silt loam <br> H1 - 0 to 8 inches: channery silt loam <br> H2 - 8 to 20 inches: channery loam <br> H3-20 to 30 inches: channery silt loam <br> H4-30 to 34 inches: unweathered bedrock | $\begin{aligned} & 5 \text { to } \\ & 16 \% \end{aligned}$ | Well drained | Ridges, hills |
| Hf | Haven- <br> Urban land complex | H1 - 0 to 12 inches: loam <br> H2 - 12 to 23 inches: gravelly loam <br> H3-23 to 72 inches: stratified very gravelly <br> sand <br> H1 - 0 to 6 inches: variable | 0 to 3\% | Well drained | Outwash plains |



Photo 1: The former Bulkeley School is located in the center of the Project Parcel. View to the northwest.


Photo 2: The southern portion of the Parcel contains an asphalt covered parking lot. View to the northwest.


Photo 3: Buried utilities and a playground are in the western portion of the parcel. View to the south.


Photo 4: Buried utilities and equipment are located on the northern side of the school building. View to the southwest.

## C. Recorded Archaeological Sites and Surveys

On February 23, 2023 HCS reviewed the combined site files of the New York State Office of Parks, Recreation, and Historic Preservation (OPRHP) and the New York State Museum (NYSM) for information regarding previously recorded archeological sites within one mile ( 1.6 km ) of the Parcel. HCS also consulted regional Native American sources (e.g., Beauchamp 1900; Parker 1920; Ritchie 1980; Ritchie and Funk 1973) for descriptions of regional archeological sites.

## Previously Recorded Archaeological Sites

Nineteen (19) previously documented archaeological sites and one (1) New York State Museum area have been identified within a one mile-radius of the Project Parcel boundaries. The historic sites are Map Documented Structures (MDS) that have been identified on the nineteenth century landowner maps. A number of these locations have been disturbed by modern development or do not have any visible surface remains.

Table 2: Previously Recorded Archaeological Sites within one mile-radius

| Site <br> Number | Site Name | Distance from <br> Project | Time Period | Site Type <br> Materials Recovered |
| :--- | :--- | :--- | :--- | :--- |
| NYSM 7669 | Rhinebeck <br> Rockshelter | Includes Project <br> APE | Precontact | Large generalized are that <br> includes the entirety of the <br> Village of Rhinebeck. |
| 2716.00096 | Rhineson <br> Corporation Site | $3158^{\prime} / 962.7 \mathrm{~m}$ | Precontact | Undetermined Precontact <br> site |
| 2716.000961 | Baptist Home <br> Precontact Site | $4333.1^{\prime} / 1.32 \mathrm{k}$ | Precontact | Undetermined camp site. |$|$| Uner\| |
| :--- |


| 2750.000434 | Rhinebeck Site 4 | $3507.5^{\prime} / 1.07 \mathrm{k}$ | Precontact | Middle Archaic to <br> Woodland habitation site |
| :--- | :--- | :--- | :--- | :--- |
| 2750.000435 | Spring Historic Site | $1553.4^{\prime} / 473.4 \mathrm{~m}$ | Historic | Late 18 $8^{\text {th }}$ to $19^{\text {th }}$ century <br> historic dump. Ceramics, <br> tobacco pipes, glass, nails <br> and faunal remains <br> recovered. |
| 2750.000436 | Rhinebeck Site 2 | $2670^{\prime} / 813.8 \mathrm{~m}$ | Precontact | Middle Archaic to <br> Woodland habitation site |
| 2750.000437 | Rhinebeck Site 10 | $3123.1^{\prime} / 952 \mathrm{~m}$ | Precontact | Late Archaic to Woodland. <br> habitation site |
| 2750.000438 | Rhinebeck Site 11 <br> Historic | $2668.6^{\prime} / 813.4 \mathrm{~m}$ | Historic | Remains of Late $18^{\text {th }} \mathrm{C}$ <br> dwelling and barn. <br> Ceramics, glass and pipe <br> fragments. |
| 2750.000439 | Rhinebeck Site 2 | $2628.6^{\prime} / 801.2 \mathrm{~m}$ | Precontact | Middle Archaic to <br> Woodland habitation site |
| 2750.00044 | Rhinebeck Wagon <br> Shop Historic Site | $1488.2^{\prime} / 453.6 \mathrm{~m}$ | Historic | Late 19.th to 20 $0^{\text {th }} \mathrm{c}$ wagon <br> shop. |

## Previously Completed Archaeological Surveys

As part of the research for this report, surveys completed for projects in the general area were consulted. Eleven (11) surveys and 1 (one) building survey have been completed within a one-mile radius of the Parcel. These surveys have identified areas of Native American occupation sites and eighteenth to twentieth century period domestic sites. These identified sites, included in Table 2, will not be impacted by the proposed Project.

## D. Native American Context

During the Paleoindian period, mobile bands of hunter-gatherers occupied what is now New York State. These bands exploited the resources of the landscape by hunting game and gathering plants. Paleoindian sites have been in the upland regions a short distance from the Hudson River (Ritchie and Funk 1976). Frequently these sites are associated with sources of stone, as is the case with a site in Greene County where a quarryworkshop complex has been excavated. More frequently, the sites appear to have been temporary campsites located where it would be possible to watch for game as it moved across the landscape (Ritchie 1980).

With the lowering of the water table during the Archaic period, subsistence methods and technologies changed in response to climatic warming. This was accompanied by an increase in vegetation density and diversity, changing faunal migrations and a change in sea levels (Sirkin 1977). The Archaic Period was likely a time of incipient sedentism among the inhabitants of the area. Changes in settlement and subsistence patterns that occurred during the Late Archaic period reflect an increased exploitation of coastal and riverine resources (Snow 1980). Ground stone food processing tools are more common, reflecting an increase in processed plant resources in the diet. Projectile points commonly found at Late Archaic sites include narrow stemmed, broad stemmed and side notched types (Snow 1980). The Laurentian Tradition of the Late Archaic is the most represented throughout New York State, and is subdivided into a series of phases: Vergennes, Vosburg, Sylvan

Lake, River and Snook Kill. Ground stone tools appear, and steatite bowls are associated with the later part of this time period (Pretola and Freedman 2007).

The Woodland period is distinguished from the Archaic in part, by the use of ceramics. Horticulture, although practiced in other parts of North America at an earlier date, does not appear in the Hudson River Valley until c. 1000 AD (Funk 1976). The soil and moisture requirements for the cultivation of maize, beans, and squash created a marked change in the pattern of land use and the selection of locations for villages (Hart and Brumbach 2005). It was no longer necessary for the entire group to move from place to place following a seasonal round of migration fueled by fluctuating sources of food. Cord marked ceramics became common during the Middle Woodland period, and incised vessels, many with a collar area, are typical of Late Woodland cultures (Lavin et al 1993).

Up to the time of Contact, two Algonquin-speaking Indian nations, referred to locally as the Wappinger and the Mohigan (Mahican), occupied the southern and northern sections of Dutchess County. These tribal people were sedentary, living in small permanent villages and growing crops such as maize and squash (Cronon 1983). While the original population of the Wappinger is unknown, Snow suggests that it may have reached 50,000 people (1980). The introduction of small pox by the Dutch reduced the Native Population to less than 1000 by the year 1700 (MacCracken 1956).

## E. Historic Context

Dutchess County, one of New York's original counties, was created in 1683, and at that time included all of Putnam County and part of Columbia County (Cronon 1983). The county was divided into thirteen patents, with the Rombout Patent being one of the earliest. Dutch settlement on the patents began in the late 1600s, with English Quakers from Rhode Island and Long Island moving into the eastern part of the county in the 1740s (Cronon 1983)

The Town of Rhinebeck was made up of three early land patents; the "water lots" section of the Nine Partners Patent of 1697, the Pawling patent of 1696, and the Fauconnier Patent of 1705. As early as 1730, a part of the Fauconnier Patent was known as the Hyde Park Patent (Rhinevault 2009). Settlement began in the Town of Rhinebeck as early as 1735 , when Jacob Stoutenburgh, a Dutchman and trader from Westchester, purchased Water Lot 9 on the Nine Partners Patent on the south side of Crum Elbow Creek (Smith 1877). Stoutenburgh, had been purchasing property in Dutchess County for some time when he moved his wife and eight children up the Hudson to the area. Dr. John Bard, an eminent New York City doctor, married Suzanne Valleau, who was the granddaughter of Peter Fauconnier. Following Fauconnier's death, Bard purchased a portion of the Fauconnier Patent and continued to buy land until he owned all of the lands of the original Fauconnier Patent (Rhinevault 2009).

By the 1790 's, considerable settlement had taken place along the Albany Post Road, including the hamlets of Staatsburg at the north end of town and Hyde Park, which was to the south and a half mile east of the Hudson River. The Town of Rhinebeck was established in 1821 (Hasbrouck 1909). The eastern portion of the Town of Rhinebeck includes the hamlet of Staatsburg which was first settled by Dr. Samuel Staats in 1715. He purchased the land from the owner of the land patent, Henry Pawling (Smith 1877). By 1813 Staatsburg had a post office, and was primarily a farming community with grain being the main crop. Several mills were established on Crum Elbow Creek to grind the grain. In addition to gristmills, there were also sawmills, a plaster mill, a fulling mill, and mills that made nails and other types of tools. Sloops docked daily at the Hudson

River piers to transport grain and other products to New York City, including hay for the New York City police horses. There were also other industries located near the mouth of Crum Elbow Creek, including shipbuilding and ship repair. The Hudson River also provided important resources such as sturgeon. The harvesting of sturgeon provided employment for a significant number of Hyde Park residents (Rhinevault 2009). In the late nineteenth century the hamlet of Staatsburg became the location of ice harvesting and storage industries. During the winter months, the Mutual Benefit Ice Company and the Knickerbocker Ice Company would cut river ice and store it until it could be shipped to markets in Albany and New York.

In 1847, construction began on the Hudson River Railroad, which ran along the bank of the River through Staatsburg. Railroad service began in 1849 , although the entire span between New York and Albany was not completed until 1851. In 1869, the New York Central and Hudson Railroad replaced the Hudson River Railroad (Frederiksen 1962).

The Flatts, as William Traphagen called the village, or Rhinebeck Flatts, was located at the intersection of the well-traveled Sepasco Trail and King's Highway. Landsman Kill which flowed parallel to Sepasco Trail provided the settlers with their primary source of power. Grist, woolen, saw and paper mills were concentrated around along the Landsman Kill where it intersected with the King's Highway. Soon there was a wagoner, a cooper, a seinemaker, a shoemaker, a mason, a saddle and harness maker, a linen weaver, a tailor, a gunsmith, a tanner, a cordwainer, a wheelwright, a blacksmith and a carpenter in the neighborhood (Morse 1908).

## History of Bulkeley school

In 1805, the public school and district system was introduced in the Town of Rhinebeck. The first village school was the Union Free School District No. 5, and initially consisted of an oblong one-story two-room structure (Morse 1908). From 1811 to 1839 school was kept for a short time every year in different parts of the district by itinerant teachers. In 1839, the South Street (Mulberry Street) lot was purchased and a school building was built. In 1844, the district was divided and second school building was constructed on Oak Street. In 1868, a new school building replaced the original South Street building which was in desperate need of repairs. The new structure, which featured high ceilings and spacious halls, was designed and built by Peter M. Fulton. The structure was enlarged to accommodate the growing number of students in the Village of Rhinebeck, and because new construction was financially practical. The school accommodations remained the same until 1901, when a large addition was made to the building (Morse 1908).

The Sanborn Fire Insurance Maps (Figures 10, 12-13) show that the addition was constructed on the southern side of the building. The building was expanded again in 1912, and is identified as the Rhinebeck High School. The additions were reportedly completed in 1903, 1911 and 1921 (Poughkeepsie Journal 1939a). On April 21, 1939 the "old wing" of the building burned down. The original portion of the building was destroyed along with the heating plant for the newer portions of the building. The fire doors protected the newer portions of the school (Poughkeepsie Eagle News 1939a) Adolph Knappe was hired by the school district to design the improvements and renovations (Poughkeepsie Eagle News 1939b). The building was not immediately rebuilt, as plans were in place to centralize the district, which occurred in 1941. The Rhinebeck District purchased a 28 -acre site, and began making improvements for a new school building. (Poughkeepsie Journal 1949). In the late 1940's the village residents rejected plans to build a new school building, rather than improve the Bulkeley school building (Poughkeepsie Journal 1948). The 1940 aerial image (Figure 14) shows that between 1912 and 1940 the footprint of the building changed, with the 1921
addition on the western side of the building. The northern and southern "wings" of the building were removed, presumably as a result of the fire. The school gets its name from the president of the School board, Dr. H. S. Bulkeley (Poughkeepsie Eagle News 1938).


Figure 4: Image of the Bulkeley School House. Circa 1870.


Figure 5: Image of the Bulkeley School with southern addition. Circa 1908. (Source Morse 1908).


Figure 6: Post card of the school building c. 1928. (Source: New York Heritage digital collections). This image shows the additions from the early 1900s, and the northern addition completed by 1912.

In 1952, a new school building was opened, and the Mulberry Street School was used by the lower elementary grades (Poughkeepsie Journal 1952). The 1955 aerial image (Figure 15) shows that a small addition has been added to the northern side of the building. By 1963, the school building, which consisted primarily of the 1905 and circa 1955 additions, was evaluated for modernization by W. Parker Dodge and Associates (Poughkeepsie Journal 1963). In 1970, a plan to construct an 8 -room addition on the existing school at Mulberry Street was presented to the school board (Poughkeepsie Journal 1970). This addition was not completed. In 1977 the school board voted to keep the school open, despite inadequacies of space and condition (Trilling 1977). The school was sold in 1997 to Good Shepherd Catholic Church (Haviland 1996).

## Cartographic Research

HCS examined historical maps of Dutchess County to identify possible structures, previous road alignments and other landscape features or alterations that could affect the likelihood that archeological and/or historic resource might be located within the Project Parcel. These maps are included in this report, with the boundaries of the Project Parcel superimposed. Nineteenth century maps frequently lack the accuracy of location and scale present in modern surveys. As a result of this common level of inaccuracy on the historic maps, the location of the Project Parcel is drafted relative to the roads, structures, and other features as they are drawn, and should be regarded as approximate. The historic maps included in this report depict the sequence of road construction and settlement/development in the vicinity of the Project Parcel.


Figure 7: 1850 J.C. Sidney Atlas of Dutchess County, New York. (Source: Library of Congress) Scale: 1" $=1000^{\prime}$

The earliest map included in this report is the 1850 Atlas of Dutchess County, New York. No structures are shown within the Project Parcel, although there is a building located on the western boundary. The village is densely settled, but no details are shown for the buildings except the tavern and churches within the villages.


Figure 8: 1858 J. E. Gillette. Map of Dutchess County, New York. (Source: Library of Congress) Scale: 1" $=200^{\prime}$

The second map consulted for this report is the J.E. Gillette Map of Dutchess County New York published in 1858. This map shows three buildings within the boundaries of the Project Parcel. The Seymour residence is located near South Street, the school is in the center of the parcel near Mulberry Street, and a building identified as the Episcopal Church, at the intersection of Market Street and Mulberry Street.


Figure 9: 1867 F.W. Beers. Village of Rhinebeck, Atlas of the County of Dutchess, N. Y. (Source: David Rumsey Cartography Associates) Scale: 1" $=335$ '.

The next consulted for this report is the 1867 Atlas of Dutchess County, New York, Village of Rhinebeck map surveyed by Beers. This map shows Schoolhouse number 5 is within the Project Parcel. Two structures owned by E.M. Smith are located to the west and southwest of the school. Mrs. Miller owned the vacant lot to the north of the school.


Figure 10: 1886 Sanborn Fire Insurance Map. Village of Rhinebeck N. Y. Scale: 1" ${ }^{\prime}=112^{\prime}$. (Source: Library of Congress) Scale: $1 "=112$ '

The 1886 Sanborn Fire Insurance Map shows the Union School in the northern portion of the Project Parcel. The two-story brick building is shown with a wooden cupola on the northern side of the roof. Two wood framed residential buildings are shown in the southern and southwestern portions of the Project Parcel. The school is cruciform shape with the main entrance on the northern side of the building.


Figure 11: 1890 L.R. Burleigh. Birds Eye View of the Village of Rhinebeck N. Y. (Source: Library of Congress) Scale: $1 "=75$,

The 1890 L.R. Burleigh Birds Eye View of the Village of Rhinebeck. The schoolhouse is shown within the northern and central portion of the Parcel, with residential structures to the south and west. The residential structures front along South Street. The school is shown as a two story building, with a wooden cupola on the northern side of the roof. The lawn areas to the south are shown as containing decorative trees.


Figure 12: 1905 Sanborn Fire Insurance Map. Village of Rhinebeck N. Y. (Source: Library of Congress) Scale: 1" $=125$ '.

By 1905 the school has been altered, with an addition on the southern side of the existing building. The addition is shown as constructed of brick, without the decorative wood cornice of the earlier structure. The Parcel also contains two residential buildings that have wooden shed located to the north of the building.


Figure 13: 1912 Sanborn Fire Insurance Map. Village of Rhinebeck N. Y. (Source: Library of Congress) Scale: 1" $=1245$ '.

By 1912 an addition has been constructed on the northern side of the original school structure. The 1868 structures has been incorporated into the larger brick high school building. To the south and southwest, the residential structures are shown on their own lots. The school is two stories in height, and is identified as being fully electric with a furnace and hot water plant.


Figure 14: 1940 Aerial image. Village f Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: $1 "=130$.

The 1940 aerial image indicates that dramatic changes have taken place to the school building and surrounding property. The structures shown consists of the circa 1905 addition, with a new addition (c. 1921) located on its western side. A newspaper article identifies three additions, the 1903, 1912 and a 1921. The northern portion of the parcel has been graded and leveled, likely the result of the burned portions of the building being removed. The residential structure in the southwestern corner of the Parcel is still present. Due to the vegetation and tree cover, is unclear if the second residential building is still present.


Figure 15: 1955 Aerial image. Village of Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: $1 "=120$ '.

The 1955 aerial image indicates shows that a small addition has been constructed on the northern side of the building. The residential structures in the southern and southwestern portions of the Parcel have been removed, and the area graded as lawn.


Figure 16: 1970 Aerial image. Village of Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: 1" $=115$ '.

The 1970 aerial image shows that there have been few changes to the parcel. The southern side of the building appears to be gravel or recently graded.


Figure 17: 2004 Aerial image. Village of Rhinebeck, Dutchess County. (Source: Dutchess County Parcel Access) Scale: 1" $=135$ '

The 2004 aerial image shows that the southern portion of the Parcel is covered with asphalt, and utilized as a parking lot. A playground has been constructed on the western side of the building.


Photo 5: The northern side of the building is constructed of cinderblock, and painted red. View to the south.


Photo 6: Access points on the eastern side of the building are below grade. View to the south.


Photo 7: View to the south from the northern boundary of the Project Parcel.


Photo 8: The northern portion of the parcel consists of mown lawns. View to the north.

## F. National Register Eligible/Listed Sites

The OPRHP files were reviewed to identify structures on or in the vicinity of the Project APE that have been listed on the National Register of Historic Places (NRL) or identified as National Register Eligible. The Project Parcel is located within the boundaries of the Rhinebeck Village Historic District and adjacent to the Hudson River Historic District and the Village of Rhinebeck Historic District Boundary Increase.

The Project Parcel, contains the Bulkely Schoolhouse, which contributes to the to the Rhinebeck Village Historic District Boundary Increase. The Hudson River Historic District and the Rhinebeck Village historic District are located within a one-half mile radius of the Proejct Parcel. Five individually listed properties are located within a one-half mile radius of the Project Parcel. These properties which include the Benner House, the Rhinebeck Post Office, the Astor Home for Children, the Henry Delamater House, and Grasmere will not be directly impacted by the proposed project

## G. Assessment of Sensitivity for Cultural Resources

## Precontact Sensitivity

Precontact period archaeological sensitivity of an area is based primarily on proximity to previously documented precontact archaeological sites, known precontact resources, and physiographic characteristics such as topography and proximity to fresh water. Precontact resources have been located within Rhinebeck and along the Landsman Kill. The project's location, near sources of fresh water, along with the presence of level terrain within the Project Parcel, makes this landscape sensitive for precontact cultural resources. this potential has been eliminated due to the successive episodes of construction and demolition, along with grading of soils that have occurred within the boundaries of the parcel.

## Historic Sensitivity

The Project Parcel has held a school since the 1860s, and the southern portion has been occupied by residential structures through the late nineteenth and early twentieth century. In the mid-nineteenth century a church was located in the northern portion of the Parcel, that was removed by the mid-late nineteenth century. This northern area has been disturbed through the construction and removal of a school addition and the original school building. The southern portion of the parcel, outside the area of the asphalt covered parking area retained the potential to contain historic resources.

## H. Summary and Recommendations

The environmental conditions present within and adjacent to the Project Parcel indicate that the area is sensitive for historic cultural resources. It is therefore recommended that a Phase 1B Archaeological Field Reconnaissance Survey be undertaken on those undisturbed areas within the Project Parcel that will be impacted by the proposed Dutchess Shepherd Bulkeley Schoolhouse Project.

## II. Phase 1B Archaeological Field Reconnaissance Survey

## I. Archaeological Survey Methodology

Results of the Phase 1A confirmed that the Project Parcel is located in an area of historic activity. Phase 1B field investigations took place on March 7, 2023 under the supervision of Franco Zani Jr and Beth Selig, MA, RPA.

Areas selected for subsurface testing were identified during an intensive walkover inspection which evaluated the landscape to determine areas of prior disturbance, slope in excess of $12 \%$ grade, saturated or wet soils, and documented evidence of former land usage. Shovel tests were excavated at intervals of 50' (15 m) along transects conforming to the land surface and the boundaries of the Project Parcel. The locations of the tests and disturbed areas were recorded on a scaled map that shows surveyed borders and has the locations of the various structures or features identified (Field Reconnaissance Map).

Shovel tests (ST's) approximately 45 cm in diameter were spaced 50 feet apart and excavated at least 10 cm into sterile subsoil, unless impeded by rocks or other obstructions. This subsurface testing strategy was employed in areas of undisturbed soils and areas that did not contains surface water. All excavated soils were screened through 0.25 -inch hardware cloth. Shovel test profiles were recorded on standard field forms which included stratigraphic depths, Munsell soil color, texture and inclusions, disturbances and artifacts (Appendix B). The presence of clearly modern materials, such as plastic fragments, modern bottle glass fragments, or twentieth-century architectural materials was noted on field forms, but HCS does not generally collect these materials for analysis or inclusion in the artifact assemblage. If any cultural material was recovered, these finds would be bagged and labeled with standard project provenience information. Following completion of archaeological fieldwork, all recovered materials would be washed, identified, inventoried, and re-bagged in labeled clean 4 -mil archival quality plastic bags. All cultural material collected would be identified and described based on material type and standard descriptive characteristics and included in an artifact inventory.

## J. Archaeological Survey Results

Initially the field methodology included the completion of five (5) transects each containing a various number of shovel tests. However, given the amount of disturbance identified at the ground surface, and the asphalt parking area a number of tests were not completed.

Testing began in the north of the Project Parcel, near the corner of Mulberry and East Market Street. This area, consisting of Transects 1 and 2, was previously cleared and contains a packed gravel road, leach field, and large lawn area. The 1940's aerial (figure $x$ ) shows that the ground surface has been graded. Soils in this area consisted of brown gravelly silt loams or gravelly loam overlaying a dark yellowish brown gravelly silt loam. Near the schoolhouse, an intermediate layer of dark brown gravelly loam was found under the brown gravelly silt loam and overlying a yellowish brown clay with packed gravel. Plastic, brick fragments, coal, coal slag and window glass fragments were recovered and discarded.

Transect 3 was behind the school, in an area that was heavily disturbed with buried utilities. Only a single shovel test was done here, finding a brown sandy loam overlaying a very dark grayish brown sandy clay loam with dense gravel overlaying a dark yellowish brown coarse sand and gravel.

Transects 4 and 5 were in the western and southern portions of the Project Parcel. These areas have been disturbed by buried utilities and the construction of a playground and parking lot. Soils here were mixed, with soils consisting of dark brown sandy clay loam with gravel, very dark brown gravelly silty clay loam, dark brown coarse sand and gravel, dark brown gravelly silty clay loam, mixed brown and dark yellowish brown gravelly silt loam or mixed dark brown and dark yellowish brown gravelly sandy loam overlaying dark yellowish brown clay loam with gravel, sandy clay with gravel packed gravel and clay or gravelly clay or a dark grayish brown coarse sand and gravel. Transect 4 shovel test 13 , and transect 5 shovel test 16 encountered a large ash layer. Metal, nails, coal, coal slag, slag, brick fragments and window glass were recovered from this layer and discarded in the field. Portions of the school burned in 1939, and it is unclear if the existing dwellings on the lot burned at the same time. The ash layer which contained various type of burned and rusted metal, may be the result of building removal and landscape improvements in the wake of the fire.

## K. SUMMARY AND RECOMMENDATIONS

In March of 2023, Hudson Cultural Services (HCS) completed a Phase 1A Literature Search and Sensitivity Assessment and Phase 1B Archaeological Field Reconnaissance Survey of the proposed Dutchess Shepherd Bulkeley Schoolhouse Project in the Village of Rhinebeck, Dutchess County, New York. The survey evaluated the portions of the parcel to be disturbed. The Project Parcel of Potential Effect (APE) includes $\pm 1.44$ acres ( 0.58 hectares) of urban landscape. Fifteen (15) shovel tests were completed within the boundaries of the Project Parcel. Coal, ash, coal slag, brick fragments, slag, metal, window glass, plastic and nails were found and discarded. The soil profile within the parcel indicates that disturbance has taken place due to the construction and demolition of portions of the school building and the removal of the residential structures in the southern portion of the Parcel.

It is the recommendation of Hudson Cultural Services that no further archaeological investigation is warranted.

These recommendations are subject to concurrence by the New York State Office of Parks, Recreation and Historic Preservation.


Photo 9: Transects 1 and 2 began near East Market Street. View to the west.


Photo 10: The landscape on the southern side of the school building is covered with asphalt. View to the north.


Photo 11: View to the southeast from the western side of the school building.


Photo 12: A shed is located in the northwestern portion of the Project Parcel. View to the north, of the location of TR 5 .


Photo 13: Stormwater drains are located in the parking area, in the southern portion of the Parcel. View to the west


Photo 14: Deep tests, completed by the owner for proposed septic systems show extensive disturbance and building debris to the north of the school building.

H.C.S

Hudson Cultural Services
Figure 18: Dutchess Shepherd Bulkeley School Phase 1B Field Reconnaissance Map Scale 1" = 50'

## LEGEND


( IN FEET ) 1 inch $=50 \mathrm{ft}$.

L. Bibliography

Bailey,
1995 Description of the Ecoregions of the United States. http://www.fs.fed.us/land/ecosysmgmt/index.html. Accessed March 9, 2023.

Beauchamp, William
1900 Aboriginal Occupation of New York. New York State Museum Bulletin No. 32: Albany, NY.
Bachman, Charles and C.H. Corey.
1858 Map of Dutchess County, New York from Actual Surveys. Gillette, Philadelphia, Pennsylvania.
Beers, F.W.
1867 Atlas of New York. F.W. Beers, A.D. Ellis, and G.G. Soule, New York.
1891 Atlas of the Hudson River Valley from New York City to Troy. Watson and Co.: New York.
Coles, Christopher
1789 A Survey of the Roads of the United States of America. Christopher Colles, New York.
Croswell, E.
1838 Laws of the State of New York. Passed at the Sixty-First Session of the Legislature. Wm.A. Gould \& Co. Albany.
de Laubenfels, D.C.
1975 Mapping the World's Vegetation: Regionalization of Formations and Flora. Syracuse University Press.

Domack, E.W. (Ed.), Lothrop, J.C., Bradley, J.A.,
2012 Paleoindian Occupations in the Hudson Valley, New York. Texas A \& M University Press.
Dunn, S.
1994 The Mohican's and Their Land. Purple Mountain Press. Fleischmann's NY.
Eisenstadt, Peter ed.
2005 The Encyclopedia of New York State. Syracuse University Press, Syracuse, NY.
Fisher, Donald W., Yngvar W. Isachsen, Lawrence V. Rickard
1970 Geologic Map of New York, Lower Hudson Sheet. New York State Museum and Science Service Map and Chart Series No. 15. New York State Museum, Albany, New York.

Flad, Harvey K., Clyde Griffen
2009 Main Street to Main Frames: Landscape and Social Change in Hyde Park. Ed. Thomas Wermuth. State University of New York Press, Albany.

Fredriksen, Beatrice
1962 Our Local Heritage, A Short History of the Town of Rhinebeck. Hyde Park, New York: Cross Road Press.

Funk, Robert E.
1976 Recent Contributions to Hudson Valley Prehistory. New York State Museum Memoir 22. Albany, NY.

Geo-Access- Dutchess County Web Mapping (http://geoaccess.co.dutchess.ny.us/geoaccessv2/) September 21, 2021.

Hart, J. P., and H. J. Brumbach.
2005. Cooking Residues, AMS Dates, and the Middle-to-Late Woodland Transition in Central New York. Northeast Anthropology 69:1-34.

Hasbrouck, Frank. Ed.
1909 The History of Dutchess County, New York. S. A. Matthieu: Hyde Park, NY.
Haviland, Jim
1996 "Plans Underway for Shift in Sept". Poughkeepsie Journal. 26 Dec 1996. Accessed at Newspalers.com.

Küchler, August W.
1964 Potential Natural Vegetation of the Conterminous United States. American Geographical Society, New York.

Lavin, L., F. Gudrian and L. Miroff.
1993 Prehistoric Pottery from the Morgan Site, Rocky Hill, Connecticut. Bulletin of the Archaeological Society of Connecticut 56:63-100.

MacCracken, Henry Noble
1956 Old Dutchess Forever. Hasting House Publishers, New York.

Morse, Howard
1908 Historic Old Rhinebeck echoes of two centuries A Hudson River and Post Road Colonial Town. Self-published, Rhinebeck, NY.

Natural Resources Conservation Service www.websoilsurvey. March 22, 2022.

New York State Archaeological Council (NYAC)
1994 Standards for Cultural Resource Investigations and the Curation of Archaeological Collections in New York State. New York Archaeological Council.

New York State Office of Parks Recreation and Historic Preservation CRIS
cris.parks.ny.gov Web Accessed March 30, 2022.
Parker, Arthur
1920 Archaeological History of New York. New York State Museum Bulletin. No. 237 and 238. The University of the State of New York: Albany, NY.

Pierson, William H., Jr.
1970 American Buildings and Their Architects: The Colonial and Neo-Classical Styles. Doubleday: New York, N. Y.
Pretola, J.P. \& J.A. Freedman
2009 Management Summary: Phase III Data Recovery Black Dirt Deep Testing, Towns of Minisink \& Warwick, Orange County, New York. Submitted to the Federal Agency Regulatory Commission, Docket \# CP98-150-000, OPRHP \# 04PR02896 by Gray \& Pape, Inc., Providence, RI

Poughkeepsie Eagle News
1939a "Four Neighbor Companies go to Village Aid". 21 Apr 1939. Accessed at Newspapers.com.
1939b "Architect Engaged for Rhinebeck School.: 2 Jun 1939. Accessed at Newspapers.com.
1938 "Voters in Rhinebeck Reject Playground." 27 Sept 1938. Accessed at Newspapers.com.
Poughkeepsie Journal
1963 "Rhinebeck Slates School Space Talks". 18 Dec 1963. Accessed at Newspapers.com

1952 "Rhinebeck to Move Soon to New Building. 26 Mat 1952. Accessed at Newspapers.com.

1949
1948
"Rhinebeck School Plan indicates 1 Million Cost." 13 Jan 1949. Accessed at Newspapers.com. "Rhinebeck Beats School Project." 23 Oct 1948. Accessed at Newspapers.com.

Reynolds, Helen Wilkenson
1938 The Role of Plant Life in the History of Dutchess County. Hyde Park: NY.
Ritchie, William A.
1969 The Archaeology of New York State. Natural History Press: Garden City, NY.
Ritchie, William A. and Robert Funk
1973 Aboriginal Settlement Patterns in the Northeast. Memoir 20. New York State Museum and Science Service. Albany, NY.

Rhinevault, Carney
2009 Town of Rhinebeck History. http://www.hydeparkny.us/Community/.
Salomon, Julian H.
1983 "Munsee and Mahican: Indians of Dutchess County." Dutchess County Historical Society Yearbook: 68. Hyde Park: NY.

Shaver, Peter (compiler)
1992 The National Register of Historic Places in New York State. Preservation League of New York State: Albany, NY.

Sidney, J.C.
1850 Map of Dutchess County, New York from Original Surveys. Gillette, Philadelphia, Pennsylvania.
Smith, James H.
1882 History of Dutchess County, New York. D. Mason \& Co.: Syracuse, NY.
Smith, Philip H
1877 General History of Dutchess County from 1609 to 1876. Pawling, New York.
Snow, Dean R.
1980 The Archaeology of New England. Academic Press: New York, NY.
Spectra Inc.
2004 Draft Generic Environmental Impact Statement (Dgeis) New York State Statewide Wireless Network (Swn) Geologic Resources Appendix C: Geologic, Structural and Topographic Features of Physiographic Provinces.

Stilgoe, John R.
1982 Common Landscape of America, 1580-1845. Yale University Press: New Haven, CT.
United States Office of Agriculture
1981 Soil Survey of Dutchess County, New York. In cooperation with Cornell University Agricultural Experimentation Station. U.S. Government Printing Office. Washington D.C.

United States Geological Survey
2019 United State Geological Survey Topographical Map. Kingston East, NY Quadrangle. 7.5 Minute Series.
1963 United State Geological Survey Topographical Map. Kingston East, NY Quadrangle. 7.5 Minute Series.

Appendix A: Shovel Test Records


| TR | ST | Level | Depth <br> (in) | $\begin{gathered} \hline \text { Depth } \\ (\mathrm{cm}) \end{gathered}$ | Munsell | Soil Description | Cultural Material |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 13 | 1 | 0-9 | 0-22 | 10YR 3/2 | Very dark grayish brown gravelly silty clay loam | NCM |
|  |  | 2 | 9-11 | 22-28 |  | Coal and Ash Layer | Coal, coal slag and ash discarded |
|  |  | 3 | 11-15 | 28-38 | 10YR 4/6 | Dark yellowish brown sandy clay with gravel | NCM |
|  | 14 | 1 | 0-14 | 0-35 | 10YR 3/3 | Dark brown coarse sand and gravel, Stopped by concrete | window glass and onldiacoudad |
|  | 15 | 1 | 0-4 | 0-11 | 10YR 3/3 | Dark brown gravelly silty clay loam | NCM |
|  |  | 2 | 4-16 | 11-30 | 10YR 4/6 | Dark yellowish brown packed gravel and clay | NCM |
| 5 | 16 | 1 | 0-12 | 0-31 | $\begin{gathered} \hline 10 \mathrm{YR} 4 / 3 \& \\ 4 / 6 \\ \hline \end{gathered}$ | Mixed brown and Dark yellowish brown gravelly silt loam | Metal and coal discarded |
|  |  | 2 | 12-17 | 31-44 |  | Coal and Ash Layer | Coal, coal slag and slag discarded |
|  |  | 3 | 17-22 | 44-57 | 10YR 4/6 | Dark yellowish brown gravelly clay | NCM |
|  | 17 | 1 | 0-19 | 0-47 | $\begin{gathered} 10 \mathrm{YR} 3 / 3 \& \\ 4 / 6 \end{gathered}$ | Mixed dark brown and dark yellowish brown gravelly sandy loam | slag, window glass |
|  |  | 2 | 19-25 | 47-63 | 2.5Y 4/2 | Dark grayish brown coarse sand and gravel. Stopped by rock | NCM |


[^0]:    ${ }^{1}$ South Street/South Parsonage Street and East Market Street/North Parsonage Street were only counted during the weekday morning and weekday school dismissal periods given their proximity to the school.
    ${ }^{2}$ Weekday PM Calibration Factor $=1.05 \mid$ Saturday Midday Calibration Factor $=1.05$

[^1]:    ${ }^{3}$ Based on NYSDOT ATR Station ID 820596. Study years: 2013, 2015, 2019.

[^2]:    ${ }^{4}$ Dwelling, Multifamily -9 units * 2 spaces/units $=18$ spaces | Total Required $=18$

[^3]:    *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^4]:    *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^5]:    *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^6]:    *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^7]:    * 7edestrians and BicPcles yn CryssRalk4LDLeft, o Do ight, TDThru, UDUATurn

[^8]:    *Aedestrians and Bicycves H CrHsswawP9L( Left, R( Right, T( Thro, U( U-Torn

[^9]:    *7edestrians and BicPcles yn CryssRalk8LDLeft, o Do ight, TDThru, UDUAFurn

[^10]:    *Aedestrians and Bicycues Hh CrHswavP6L7Left, R7Right, T7Thro, U7U-Torn

[^11]:    *Aedei trani and P clyTlei on s roii walS8L: Left, R: Rgght, k: khru, B: B-kurn

[^12]:    *Aedestrians and Bicycves H CrHsswawP9L7Left, R7Right, T7Thro, U7U-Torn

[^13]:    *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

[^14]:    *- aTaCdseLCeLT BscPcıaCyL ) iyCReu88l Dl afc2o Do sngdk DkgiF2UDUAk FiL

[^15]:    ${ }^{6}$ PedeLtHaULaLd RiTyTæL AUs HALmadk7g－geft，w－wihct，n－ncÆ゙，B－Bn CHU

[^16]:    *Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

